Faculty of Engineering

The Faculty of Engineering 302

The Professors 303

General Information 305
 BSc Engineering 305
 Engineering Instruction in French 305
 Cooperative Education Program 305
 Biomedical Engineering 305
 Business Course Electives for Engineering Students 305
 Engineering Safety and Risk Management Courses 305
 Arrangements with Other Institutions 305
 Special Students 306
 Graduate Studies 306
 Professional Associations and Technical Societies 306

Faculty Regulations 306
 Admission and Registration 306
 Residence Requirements 306
 Academic Regulations 306
 Calculators in Examinations 308

Programs of Study 309
 Faculty Requirements for all BSc in Engineering Programs 309
 Required Courses and Suggested Course Sequence for Traditional Programs 309
 Required Courses and Suggested Course Sequence for Co-op Programs 309

Courses 309
 Course Listings 309
 Registration in Engineering Courses by Students in Other Faculties 309

First-Year Program 309

Field of Study 310
 Chemical Engineering 310
 Civil Engineering 317
 Computer Engineering 322
 Electrical Engineering 326
 Engineering Physics 331
 Materials Engineering 335
 Mechanical Engineering 339
 Mining Engineering 346
 Petroleum Engineering 349
The Faculty of Engineering

Engineers are designers, creators, inventors, thinkers and dreamers. They are responsible for anticipating and providing for the changing needs of society. They are creative problem solvers who help turn ideas into reality while making our world a better place.

The completion of a BSc degree in Engineering from the U of A is your first step on the road to becoming a professional engineer. As a graduate, you may register with a professional engineering association, and following a period of recognized work experience, practice engineering around the world.

The completion of a BSc degree in Engineering from the U of A is your first step on the road to becoming a professional engineer. As a graduate, you may register with a professional engineering association, and following a period of recognized work experience, practice engineering around the world. Our graduates include:

- Lorenzo Donadeo (co-founder, CEO and director of Vermilion Energy Inc.)
- Bryan Erb (lead engineer NASA Apollo Program - Heat Shields)
- Louis Grimble (co-founder of engineering giant Stantec)
- Douglas Hamilton (former NASA Flight Surgeon)
- Garry Lindberg (lead Engineer on the Canadarm Project)
- Gwyn Morgan (founder of EnCana Corp)
- Frederick W. Pheasey (co-founded Dreco Energy Services ULC, Chairman, Executive Vice President of National Oilwell Varco Incorporated)
- John Poole (co-chairman PCL Construction)
- Ray Rajotte (member of the Edmonton Protocol Diabetes Treatment research group)
- Lubomyr Romankiw (IBM researcher who invented modern computer memory technology)
- Anne Marie Toutant (Vice President Mining Operation Suncor Energy)

Our recent graduates include:

- Graham Buksa (founder Rayne Longboards)
- Casey Hudson (producer Mass Effect and Knights of the Old Republic video game franchises)
- Michael Sikorsky (founder Robots and Pencils)
- Benjamin Sparrow (founder and CEO of Saltworks Technology)
- Andrew Usenik (former lead singer 10 Second Epic)

Our Faculty is focused on providing students with the best education possible. Our professors encourage passion and creativity while instilling in students a sense of resilience and responsibility. Innovative teaching methods are encouraged and this is reflected in the fact that during the last 10 years, our professors have won five APEGA awards for Excellence in Education, three Engineers Canada Medals for Distinction in Engineering Education, seven U of A Rutherford Teaching Awards for Excellence in Undergraduate Teaching and four U of A Provost’s Awards for Early Achievement of Excellence in Undergraduate Teaching.

Our students are part of a creative, vibrant campus community. They have opportunities to discover and pursue their passions through classes and extracurricular activities such as our Dean’s Research Awards program. Many of our students choose to participate in our Co-operative Education Program, which integrates 20 months of paid engineering work experience into a five-year engineering degree. Opportunities abound both inside and outside the classroom for students to further develop their technical and leadership skills. By getting involved with extracurricular projects and clubs, students develop their professional and technical abilities but and build friendships and connections that will last a lifetime.
Administrative Officers

C Bjornson, BA, Coordinator
C Ens, Coordinator, BCom
C Foged, Coordinator, BA
RC Kully, BEd, Coordinator
S Kous, Coordinator, BEd
MT Marks, BCom, Coordinator
A Rumby, Coordinator, BBA
S Sayler, BA, Coordinator
R Sisson, Coordinator, BA
LJ Szekely, BEd, Coordinator
K Vande Vyvere, BA, Coordinator

Additional Members of the Faculty Council

President and Vice-Chancellor
IV Samarasekera, O.C., PhD, PEng, FRSC, FCAE

Registrar of the University
LM Collins

Professors
M Adolphson, PhD (East Asian Studies)
R Graves, PhD (English and Film Studies)
N Harris, PhD (Earth and Atmospheric Science)
J Parks, PhD (Resource Econ & Environmental Sociology)
B Rostron, PhD (Earth and Atmospheric Science)

Assistant Professor
J Gibbs-Davis, PhD (Chemistry)

APEGA Representative
VSV Rajan, PhD, PEng

Representatives from Engineering Students
E Davari (Graduate)
A Engel (Undergraduate)
J Goselwitz (Undergraduate)
R Gang (Undergraduate)
Y Qian (Graduate)
General Information

BSc Engineering

The Faculty of Engineering offers undergraduate programs leading to BSc degrees in Chemical Engineering, Civil Engineering, Computer Engineering, Electrical Engineering, Engineering Physics, Materials Engineering, Mechanical Engineering, Mining Engineering, and Petroleum Engineering.

All engineering students follow a common curriculum in their first year and take courses in Chemistry, Mathematics, Physics, Computing, Humanities, Engineering Mechanics, and Introduction to the Engineering Profession. In March of the first year, students choose among the various engineering disciplines offered and also between the traditional and cooperative education streams. The disciplines and education streams are described in the following sections.

The second-year program includes courses such as Mathematics and English, common to all departments, as well as courses specific to the chosen discipline. As students progress through the program, courses become more specialized. Also, exposure to basic business concepts is important to an engineering education. Programs for all disciplines include courses in engineering economics, and several engineering management and business electives are available.

Enrolment in all Engineering programs is limited.

Engineering Instruction in French

In conjunction with Faculté Saint-Jean, most of the first-year curriculum can be taken in French on the Faculté Saint-Jean campus (see Faculté Saint-Jean (En Français), Faculté Saint-Jean (English)). Academic conditions and content of the courses are equivalent to their English counterparts. Note that only a few second-year and higher level courses for Engineering programs are available in French. See Baccalauréat ès science en génie, Bachelor of Science in Engineering for further details.

Cooperative Education Program

The Faculty of Engineering offers two types of degree programs: the traditional program and the cooperative education program. Students in the traditional program attend classes from September to April over four years (eight academic terms) to obtain their degree. In the cooperative education program, students complement their academic studies with five four-month terms of paid work experience. The academic requirements for both programs are identical. Because of the work experience component, Co-op students complete the last six academic terms over four years, so a degree with the Cooperative Program designation requires five years.

The Cooperative Program is offered in all Engineering programs except the following six courses and the regular requirements for an Engineering degree within their specialization: ENGG 299, WKEXP 901, WKEXP 902, WKEXP 903, WKEXP 904, and WKEXP 905.

Because work experience is required, the Engineering Co-op Department in the Faculty helps students find suitable employment. Most jobs are in Alberta, but some jobs are elsewhere in Canada or overseas. The ultimate responsibility for obtaining work-term employment is the student’s. Co-op students pay a modest administrative fee for each work term. A limited number of visa students (student visitors) may be admitted to the Cooperative Education program.

Biomedical Engineering

Biomedical engineering is concerned with the application of engineering and the basic sciences to the solution of problems arising in medicine and biology. In its application to human physiology, biomedical engineering involves the understanding of body processes, the diagnosis of different body conditions and the rehabilitation of bodily functions. The tremendous complexity and variety of problems associated with the aforementioned areas require the involvement of engineers of all backgrounds.

Although the Department of Biomedical Engineering does not offer an undergraduate degree, offering only the MSc and PhD degrees, there are formal undergraduate biomedical engineering options and elective sequences in the Departments of Chemical and Materials Engineering, Civil and Environmental Engineering, Electrical and Computer Engineering, and Mechanical Engineering. To help students understand and prepare for employment in this area, a series of undergraduate electives is available in areas such as physiology, medical instrumentation, medical imaging, modelling of biological systems, biomaterials and biomechanics. At the graduate level, there are programs in these departments as well as the Department of Biomedical Engineering which is in both the Faculty of Engineering and the Faculty of Medicine and Dentistry. This latter program is offered jointly by the Universities of Alberta and Calgary.

For further information contact the Chair, Department of Biomedical Engineering, Faculty of Engineering and Faculty of Medicine and Dentistry, or a Faculty advisor in any Engineering department.

Business Course Electives for Engineering Students

The Faculty of Engineering has an agreement with the Faculty of Business to permit a limited number of Engineering students to take Business courses. Areas include accounting, finance, industrial relations, and management science. Interested students should contact their Program Advisor for referral to the Engineering-Business Advisor.

Honors Mathematics Courses

Students with exceptionally high interest and ability in mathematics may replace certain engineering mathematics courses with honors mathematics courses. These students would follow the honors calculus sequence MATH 117, MATH 118, and MATH 217, instead of MATH 100, MATH 101, and MATH 209. Students should contact the Honors Chair of the Department of Mathematics for an interview and approval to register immediately after receiving notification of their admission to the first-year Engineering program.

Engineering Safety and Risk Management Courses

Safety, risk, and loss management principles applicable to all engineering activities are covered in ENGG 404 and ENGG 406. These courses provide a basic understanding of the integrated practices of reducing risks to people, environment, assets, and production. The key role of Engineering and Business graduates in this expanding field is explored, including emphasis on the proactive team approach.

Arrangements with Other Institutions

Alberta Engineering Transfer Programs

Students may complete their first year of Engineering at any of the following Alberta postsecondary institutions: Grande Prairie Regional College, Keyano College (Fort McMurray), University of Lethbridge, Medicine Hat College, MacEwan University (Edmonton), and Red Deer College. Students who complete the Engineering Transfer Program at one of these institutions may apply to enter second-year Engineering at the University of Alberta and will be considered for program placement on an equal basis with continuing University of Alberta Engineering students.

Transfer Credit Agreement Between the University of Alberta and the University of Calgary Faculties of Engineering

Both the Universities of Alberta and Calgary offer undergraduate degree programs in Engineering.

The first year of the programs is similar but not identical. A transfer student may obtain complete or partial credit towards first year depending on the courses selected and the university to which admission is sought.

Complete information for transfer of credits between these programs is provided by the Alberta Learning Information Service through Transfer Alberta. The information is reviewed and updated annually by the Alberta Council on Admissions and Transfer and can be found here: alis.alberta.ca/pdf/transferalberta/Engineering.pdf.
Students who complete the first year program at the University of Calgary and are interested in a transfer to the University of Alberta should consult the Faculty of Engineering concerning transfer of credit.

Transfer from Alberta Technical Institutes

Students from Alberta Institutes of Technology (e.g., NAIT, SAIT) should refer to the Alberta Transfer Guide and the Faculty of Engineering website for information on admission policies and potential transfer credit.

Exchange Program with École Polytechnique

Students in the Faculty of Engineering at the University of Alberta may participate in an exchange program whereby one year of their studies is completed at École Polytechnique in Montréal. École Polytechnique, affiliated with the University of Montréal, is one of the premier schools of engineering in Canada and is the largest French-language school of engineering in the country. Students must have demonstrated superior academic ability and be fluent in French. The exchange normally takes place in a student’s third year. Exchange programs are available in all engineering programs except Petroleum Engineering. Please consult the Associate Dean (Student Services), Faculty of Engineering, for more information.

Special Students

Students with a BSc in Engineering may register as special students in the Faculty as part time students. For further information regarding admissibility, see Special Student.

Graduate Studies

The U of A’s flourishing research programs indicate a commitment to scholarship, pursuit of knowledge, and the application of that knowledge to the solution of contemporary problems. There are graduate programs in many fields of engineering leading to the degrees of Master of Science (MSc), Master of Engineering (MEng), and Doctor of Philosophy (PhD). A combined Master of Business Administration/Master of Engineering (MBA/MEng) degree program is also available. For more information on Graduate Studies, contact the individual Engineering departments.

Professional Associations and Technical Societies

All Engineering programs listed in the Calendar are accredited by the Canadian Engineering Accreditation Board of Engineers Canada. Therefore, graduation from the Faculty of Engineering can lead to registration as a professional engineer in the provincial associations of professional engineers, in accordance with their individual policies.

The practice of engineering throughout Canada is regulated by professional associations in each province. The right to practise and accept professional responsibility is limited to those registered with the professional organization in the province concerned. In Alberta, this is the Association of Professional Engineers and Geoscientists of Alberta (APEGA). Members of the Engineering Students’ Society are automatically student members of the Association. Graduates are encouraged to join the Association as Engineers in Training. Four years of acceptable experience following graduation are necessary for registration as a professional engineer.

The practising engineer keeps abreast of technological developments through membership in one of several technical societies. Student branches of these societies (CSAE; SChE; CSCE; IEEE; CSM; CIM; ISA; SPE; SAE; SME; ASHRAE) have active chapters on campus. Engineering students are encouraged to join the society closest to their specialty.

Faculty Regulations

Admission and Registration

General University admission requirements are set out in Admission to Undergraduate Programs and General Admission Requirements. Specific admission information for the Faculty of Engineering is detailed in Faculty of Engineering.

Residence Requirements

A student proceeding toward a BSc degree in Engineering is expected to complete at least half of the credits required through courses offered by the University of Alberta (either “on” or “off” campus in Fall/Winter or Spring/Summer). Normally, at least half of these “University of Alberta” courses will be courses from Terms 5 through 8, as shown in Required Courses and Suggested Course Sequence for Traditional Programs and Required Courses and Suggested Course Sequence for Co-op Programs. Credits obtained by special assessment at the University of Alberta may be included in the count of courses used to satisfy the residence requirements. (See Credit by Special Assessment.)

Where a student has been accepted as a transfer student from another accredited engineering program at a Canadian university and has the equivalent of six full terms of transfer credit, reducing the residence requirement to one academic year consisting of two full terms may be considered.

Academic Regulations

1. **Admissions:** The Faculty of Engineering admits students into a first-or qualifying-year program and into specialized programs at the second-year level. High school students are only admitted into the qualifying (first) year. All admissions are on a competitive basis.

Admissions into the first or qualifying year program include students who are coming directly from high school and students with less than 30.0 engineering units of postsecondary transfer credit. On an annual basis, the minimum high school average for students entering directly from high school is reviewed and may be adjusted to reflect demand and space availability. This average is calculated across the five required admission subjects (Alberta Grade 12 Chemistry 30, English 30-1, Mathematics 30-1, Mathematics 31 and Physics 30 or their equivalent), and for the past several years it has been 85.0% or above.

There is a maximum number of students which can be accommodated in the first or qualifying year program. Spaces available after all eligible applicants from high school have been admitted are offered to students with postsecondary transfer credit. Factors in selecting students from this group for admission are academic performance and the specific courses which earn transfer credit.

The Faculty offers a number of engineering degree program choices as indicated below:

- Chemical
- Chemical Process Control Option
- Chemical Biomedical Option
- Civil
- Civil Environmental Option
- Civil Biomedical Option*
- Computer
- Computer Software Option
- Computer Nanoscale System Design Option
- Electrical
- Electrical Biomedical Option*
- Electrical Engineering Option
- Engineering Physics*
- Engineering Physics Nanoengineering Option*
- Mechanical
- Mechanical Biomedical Option**
- Materials
- Materials Biomedical Option
- Materials Nano and Functional Materials Option
- Mining
- Petroleum

Most of these programs are offered in both the Traditional and Co-op formats except as indicated by the asterisks - *Traditional only, **Co-op only. All of the specialized or discipline specific programs start in second year and each has a limited number of spaces. On an annual basis the Faculty reviews the number of spaces in all disciplines and may change the number of spaces in specific degree programs to reflect student demand and the market demand for these disciplines subject to the availability of Faculty resources.

Students admitted to the qualifying year must normally qualify for a
specialized program in not more than two terms (one year). Students entering directly from high school with less than 15.0 units of transfer credit may, subject to space availability, be allowed an additional two terms (one year) to qualify. Students entering with 15.0 or more units of transfer credit must qualify in not more than two terms (one year). In order to qualify, a student must be in satisfactory standing after Fall/Winter and have credit in at least 30.0 units (excluding ENGG 100/ENGG 101) of courses transferable to a specialized program. A student who is offered admission to a specialized program after two terms has qualified and may not continue as a qualifying student. Students who fail to qualify within the indicated number of terms are required to withdraw and are not normally readmitted to the Faculty.

Students are admitted to a specialized program based first of all on academic performance in the first or qualifying year and secondly on their program preferences. These preferences are communicated by completing a Program Selection Form (PSF). All students in the qualifying year, and new applicants, must complete the PSF which is accessed through the Faculty web site. All applicants with previous postsecondary education must submit a PSF. Applicants who do not have sufficient transfer credit for admission to a second year program (to be determined by the Faculty) may be considered for a qualifying year.

Students who are offered admission to one of the specialized programs must register in the Fall and/or Winter Term immediately following; otherwise they must reapply and again compete for a space in these programs.

Spaces in each specialized program are reserved for students who do not have an undergraduate engineering degree. Students who already hold an undergraduate engineering degree are not eligible for admission to a second undergraduate program in the Faculty. Study of a different engineering discipline can be done through registration as a Special Student or registration in a graduate program.

2. Engineering Graduation Average
 a. The Engineering Graduation Average (EGA) is based on the final four academic terms. If the course load in these terms totals less than 70.0 units, additional terms will be included in the calculation of the EGA as required to reach a total of at least 70.0 units. The 70.0 units include courses designated and approved by the Faculty as extra to degree. Grades for courses taken in Spring/Summer are not included in the EGA unless this is a scheduled term within the student's degree program.
 b. Requirements to Graduate: To graduate, a student must pass all courses required by the specific program; have an Engineering Graduation Average of 2.0 or greater; be in satisfactory academic standing, i.e., have a Fall/Winter GPA of 2.0 or greater.

A student who is otherwise eligible to graduate but has an EGA of less than 2.0 and/or a Fall/Winter GPA in the range 1.7 to 1.9 is permitted to return for one additional term provided this term falls within the 72 month degree time limit as specified in Time Limit for Completion of Degree. Courses to be taken during this additional term are specified by the Dean. If the student's EGA and Fall/Winter GPA following this term are not both 2.0 or greater, the student will not qualify for a degree and will not be allowed to continue in the Faculty.

The preceding paragraph also applies to any student who has completed all course requirements and chooses to return for an extra term. The courses which the student takes in this subsequent term are to be specified by the Dean.

3. Time Limit for Completion of Degree: All students must complete their degree requirements within 72 months from the time of their initial admission to a specialized degree program in Engineering. The time measurement starts at the beginning of the term following a student's initial admission to a specialized degree program in Engineering. This time limit includes all time during which a student is not in attendance either by personal choice or as a result of suspension or a requirement to withdraw. When a student encounters special circumstances that necessitate an absence from the University for an extended period of time, the student may apply to the Faculty for an extension to the degree time limit. Such an application must be made prior to the absence or at the earliest opportunity. Extensions are not granted for cases where a student has spent time on withdrawal or suspension.

4. Course Load
 a. Students in specialized degree programs are not required to meet any minimum course load requirement except as noted in Marginal Standing-Academic Warning, but must meet the degree time limit as specified in Time Limit for Completion of Degree. A course load less than that required to maintain full time status, as defined in Glossary, may have scholarship eligibility, income tax and student loan implications.
 b. Students in their qualifying year may not normally take a course load with fewer than 37.0 units in Fall/Winter, excluding the 2.0 units for ENGG 100/ENGG 101.

3. Courses Outside of Degree Requirements
 Courses which are taken in addition to a student's degree requirements are designated "Not for Degree Credit" or "Extra to Degree". Since GPA calculations include the grades earned in these non degree courses, students must obtain prior written approval from their Department before registering in such courses unless it is a requirement imposed by the Faculty. Only students whose GPA in the immediately preceding term is 2.5 or above will receive approval from their Department. These courses must be at the 200-level or above. Not all courses will be considered. See www.engineering.ualberta.ca for more information. Students who have registered in courses outside their degree program without formal approval will be withdrawn from these courses and are responsible for any associated fees.

4. Promotion: A student's progress is evaluated on completion of academic studies for Fall/Winter and on completion of any academic term occurring in Spring/Summer that is a scheduled term within the student's degree program. Scheduled terms are those shown in Required Courses and Suggested Course Sequence for Traditional Programs and Required Courses and Suggested Course Sequence for Co-op Programs. Evaluation is on the basis of the Fall/Winter GPA or Spring/Summer GPA [see Additional Grades and Remarks]. A student registered in Co-op Work Experience for the Winter Term and simultaneously registered in one or more courses is considered to have completed their academic studies for Fall/Winter after the Fall Term.
 a. Satisfactory Standing: Fall/Winter or Spring/Summer GPA of 2.0 or greater. Promotion, repeating any failed course(s).
 b. Marginal Standing-Academic Warning: Fall/Winter or Spring/Summer GPA of 1.7 to 1.9 inclusive. Proceed to next term on academic warning, repeating any failed course(s) and other courses as specified by the Dean, unless one of the following conditions applies, in which case the student must withdraw:
 c. Unsatisfactory Standing-Required to Withdraw: Fall/Winter or Spring/Summer GPA less than 1.7. Student must withdraw.

Students on academic warning or probation will be evaluated at the end of each term. Spring/Summer is not considered a term unless it is a scheduled term within the student's degree program. To clear academic warning or probation, a student must achieve an engineering term average of at least 2.0 while carrying a minimum course load of 14.0 units.

5. Work Experience Credit: Work Experience (WKEXP) courses in the cooperative education program are graded on a Pass/Fail (Credit/No Credit) basis. A student receiving a grade of Fail/No Credit is normally required to withdraw from the cooperative program and the Faculty of Engineering.
5. **Deficiencies from a Previous Term:** Where a student is deficient in credits (or courses) from a previous term, through failure or otherwise, that student must normally clear that deficiency the next time the course (or courses) is (are) offered.

Where the deficiency is the result of failure or withdrawal from an elective course, another course may be substituted if Faculty approval is first received to do so.

6. **Readmission after a Requirement to Withdraw:** A student required to withdraw must stay out for two terms before being eligible for readmission. In this context, Spring/Summer is not counted as a term unless it is a scheduled term within the student’s degree program.

 If a student receives a suspension for academic misconduct which overlaps the period of withdrawal resulting from poor academic performance, the periods of withdrawal and suspension will run sequentially. The total length of the required absence is to be equal to the period of the suspension plus the period of withdrawal for academic reasons.

All students are readmitted on probation and must take all the previously failed courses and other courses as specified by the Dean. For students in the co-op program, readmission must coincide with the start of an academic term. A student required to withdraw a second time is not normally readmitted to the Faculty of Engineering.

The requirements to clear probation are explained in Marginal Standing-Academic Warning.

7. **Withdrawal from Courses:** (See Academic Schedule for deadline dates.)

8. **Missed Term and Final Exams:** Refer to Attendance and Evaluation Procedures and Grading System. There are no deferred term exams for courses offered in the Faculty of Engineering. In instances where a student has a documented reason for missing a term exam(s) and at the discretion of the instructor, the value of a missed term exam(s) can be added to the value of the final exam. A missed term exam(s) is considered assigned term work which has not been completed in determining eligibility for a deferred final exam. If the resulting final exam weight exceeds that allowed under Weighting of Term Work and Final Examinations, then any accommodation will be at the discretion of the Dean of Engineering.

9. **Transfer Credit:** Students planning to earn transfer credit for a course(s) taken elsewhere should obtain Department and Faculty approval in the form of a Letter of Permission prior to taking the course(s). The Faculty is under no obligation to grant transfer credit without such preapproval. Letters of Permission are not given to students who have been required to withdraw until they have been readmitted. Students returning for a second qualifying year who have successfully completed a qualifying year course(s) which was (were) not taken or not passed in their first qualifying year will automatically receive credit for such courses and cannot retake them.

10. **Reexaminations:** See Reexaminations.

11. **Academic Awards and Recognition**

 a. **Awards and Scholarships**

 Information about awards and scholarships is available in the University of Alberta Awards Publication. A number of scholarship competitions are open to high school students who plan to study Engineering at the University. Students who are continuing in the Faculty may apply for various awards. In addition, a number of awards are made by Faculty or Department nomination. Awards and scholarships are awarded after the second, fourth, sixth, and eighth academic terms and require a student to carry a full course load. For University-wide award competitions, this is the course load calculated from First-Year Program, Required Courses and Suggested Course Sequence for Traditional Programs, or Required Courses and Suggested Course Sequence for Co-op Programs as appropriate. In the case of Faculty and Department awards, a full course load is defined as at least 35.0 units. Because of their course load requirements co-op students are not eligible for awards in the third year of their program.

 b. **First-Class Standing**

 First-class standing is awarded following the second, fourth, sixth, and eighth academic terms based on a GPA of 3.5 or greater, calculated on a course load of not less than 35.0 units in the two preceding academic terms.

 c. **Graduation “With Distinction”**

 To graduate “With Distinction,” a student must have an Engineering Graduation Average of 3.5 or greater, and carried at least 70.0 units in the final four academic terms.

 4. **Communication with Students Re Academic and Discipline Matters:** Pursuant to Electronic Communication Policy for Students and Applicants, the Faculty of Engineering will communicate all academic standing decisions and all decisions relating to charges under the Code of Student Behaviour electronically. The decision letter will be an electronic document attached to an e-mail forwarded to the student’s campus e-mail address which includes the ualberta.ca extension or available through Bear Tracks.

5. **Appeals**

 a. **Academic Standing:** A student wanting to appeal an academic standing decision must first attempt to resolve the issue with the Faculty of Engineering, Associate Dean (Student and Co-op Services). If the matter remains unresolved, the student may then appeal to the Faculty of Engineering Academic Appeals Committee. To do so, the student must provide a written letter of appeal addressed to the Dean which outlines the basis for the appeal. The letter of appeal must be received by the Dean within 28 calendar days from the decision date. This is the date of the letter in which the student was first advised of the academic standing decision. The 28 days include mailing time and all time spent in attempting to resolve the matter with the Associate Dean (Student and Co-op Services).

 Note: An unsuccessful appeal within the Faculty or any conditions imposed as part of the appeal decision within the Faculty may be carried to the General Faculties Council Academic Appeals Committee. See Appeals and Grievances. The appeal of any conditions in an appeal decision by the Faculty must occur within the timelines set out for any appeal to the General Faculties Council Academic Appeals Committee. The consequences resulting from a subsequent failure to meet the conditions are not appealable.

 b. **Grievances Concerning Grades:** The assignment of marks and grades is the initial responsibility of an instructor. Any grievances concerning grades should first be discussed with the instructor. If the problem is not resolved, the student should talk with the Chair of the Department where the course is taught.

 For courses taught in the Faculty of Engineering, final recourse is to the Faculty of Engineering Academic Appeals Committee. To appeal to this committee, the student must submit the appeal in writing to the Dean within 60 calendar days after the final examination period.

 c. **Work Term Status:** Faculty initiated withdrawal from a work term, denial of work term or disciplinary decisions related to a work term are appealable to the GFC Practice Review Board (see Calendar Practicum Intervention Policy). Failure of a work term which results from lack of performance and/or termination of employment by the employer is an academic standing decision and is appealable as described in Academic Standing.

 A copy of the Faculty of Engineering Regulations regarding appeals may be obtained from the Faculty Office, E8-050 Engineering Teaching and Learning Complex.

4. **Engineering Ethics, Practice and Profession**

 Students will be afforded only one opportunity to meet the required criteria for achieving credit in scheduled ENGG 100, ENGG 101, or ENGG 400 courses. Students failing any of ENGG 100, ENGG 101, or ENGG 400 will be required to complete alternative replacement courses (one replacement course for each instance of ENGG 100, ENGG 101, or ENGG 400 graded as No Credit, NC) at the discretion of the Dean. Such alternative courses will only be approved by the Dean if a student has previously failed to achieve credit in scheduled courses.

 Criteria for achieving credit in ENGG 100 or ENGG 101: Proven completion of required safety training through the Office of the Dean, plus successful completion of equivalent course(s) nominated solely at the discretion of the Dean.

 Criteria for achieving credit in ENGG 400: Successful completion of an ethics course nominated solely at the discretion of the Dean.

5. **Calculators in Examinations**

 Instructors must specify in the syllabus for each course, the course policy with respect to calculators in examinations. The policy choices are:

 1. no calculators
 2. approved non-programmable calculators
Courses

Course Listings
Faculty of Engineering courses are listed in Course Listings, under the following subject headings:
- Biomedical Engineering (BME)
- Bioresource Engineering (BIOEN) (offered by the Faculty of Agricultural, Life and Environmental Sciences)
- Chemical and Materials Engineering (CME)
- Chemical Engineering (CH E)
- Civil Engineering (CIV E)
- Computer Engineering (CMPE) (offered jointly with the Faculty of Science)
- Electrical Engineering (EE E)
- Electrical and Computer Engineering (ECE)
- Electrical and Computer Engineering/Biomedical Engineering (EE BE)
- Engineering, Computing (ENCMP)
- Engineering, General (ENGG)
- Engineering, Management (ENG M)
- Engineering, Physics (EN PH) (offered jointly with the Faculty of Science)
- Environmental Engineering (ENV E)
- Materials Engineering (MAT E)
- Mechanical Engineering (MEC E)
- Mineral Engineering (MIN E)
- Mining Engineering (MIN E)
- Mining and Petroleum Engineering (MP E)
- Petroleum Engineering (PET E)
- Work Experience (WKEXP)

Registration in Engineering Courses by Students in Other Faculties
Although the Faculty of Engineering is a restricted enrolment Faculty, it is possible for students registered in other Faculties to enrol in a limited number of Engineering courses. However, students not registered in the Faculty of Engineering must obtain permission to enrol in Engineering courses. The appropriate Department Chair in the Faculty of Engineering is authorized to grant permission.

Note: This requirement does not apply to students in programs that include Engineering courses as a formal part of the program.

First-Year Program
Students registering for first-year courses should consult the Registration and Courses menu at www.registraroffic.ualberta.ca for detailed registration procedures. Students interested in an equivalent curriculum given in French should consult Baccalauréat ès science en génie.

Term 1
- CHEM 103 - Introductory University Chemistry I
- ENGG 100 - Orientation to the Engineering Profession I
- ENGG 130 - Engineering Mechanics
- MATH 100 - Calculus I
- PHYS 130 - Wave Motion, Optics, and Sound
- Complementary Studies Elective (3-0-0)

Term 2
- CHEM 105 - Introductory University Chemistry II
- ENCMP 100 - Computer Programming for Engineers
- ENGG 101 - Orientation to the Engineering Profession II
- EN PH 131 - Mechanics
- MATH 101 - Calculus II
- MATH 102 - Applied Linear Algebra

Notes
1. The Complementary Studies Elective listed in the first term should be selected from courses identified in Complementary Studies Electives. List 1 is recommended for First Year students.
2. Students accepted into the Honors Mathematics stream replace MATH 100 and MATH 101 with MATH 117 and MATH 118 (see Math and Applied Sciences Centre (MASC) below).

Math and Applied Sciences Centre (MASC)

MASC, a department of University Student Services, offers mathematics preparation for students entering the Faculty of Engineering. Although all students can benefit from these courses, they are particularly recommended for students who scored less than 80% in Mathematics in 30/31 or who have been away from the study of mathematics for three years or more. Further information can be found at www.ualberta.ca/~masc.

Field of Study

Chemical Engineering

Chemical engineers design the complex plants needed to convert a laboratory or pilot-scale experiment into an industrial operation capable of producing tons of material daily. Chemical engineers supervise the construction of these plants, and are also involved in running and maintaining them. These activities call for a thorough understanding of chemistry, physics, mathematics and many other skills.

The chemical engineer must understand the physics and mathematics behind the problems of heat and mass flow when large quantities of reacting material must be heated or cooled, and moved from one section of the plant to another. The chemical engineer must understand the properties of the materials available to build the plant; how they tolerate high pressures and temperatures; and how they resist corrosion and wear. In the design and operation of biotechnology or environmental protection processes, the chemical engineer also needs to understand basic biological principles.

Students study the fundamentals of chemistry, physics, and mathematics, then learn engineering science and design. Selecting appropriate electives allows students to specialize in oil sands engineering, nanoscale engineering, mineral processing and extractive metallurgy, and polymer materials. See below and Program and Technical Electives for more details.

Graduates are equipped to embark on careers in the chemical, petrochemical, food processing, forest products, pharmaceutical, and semiconductors industries, or work for a government agency.

Computer Process Control Option in Chemical Engineering

With increased use of distributed digital computer control systems in the process industries and microprocessor-based analyzers and instruments, a need exists for process engineers with a background in areas that have traditionally been in the domain of the electrical engineer and computing scientist. This program, which retains all the core chemical engineering courses, provides the necessary background for engineering positions concerned with applying computers to the control of process systems.

Enrolment is limited.

Biomedical Option in Chemical Engineering

The application of engineering principles to biomedical sciences has been gaining significant momentum since the 1980s. Exploring a biomedical problem from an engineering perspective provides unique solutions to biomedical problems. Utilizing established chemical engineering principles, such as thermodynamics, mass transfer and reactor design, enables significant advances in human health and facilitates establishment of an industrial activity based on bioengineering principles. The Biomedical Option retains all of the core courses of the Chemical Engineering program. It then adds courses specific to the biomedical sciences to provide students with the necessary background for employment in the biomedical field. See Biomedical Engineering for more details. Enrolment is limited.

Oil Sands Engineering Elective Pattern in Chemical Engineering

With over 1.7 trillion barrels of oil in place, the oil sands of Alberta are an enormous resource to supply Canada’s energy needs and support oil exports for many years in the future. Extracting the bitumen and upgrading it to synthetic crude oil presents exciting engineering challenges, including increasing yield and energy efficiency, reducing environmental impact and improving the quality of the oil product. The Oil Sands Engineering Program retains all of the core courses of the Chemical Engineering program. It then adds courses specific to the oil sands to provide students with the necessary background for employment in the industry.

Enrolment is limited.

Elective Streams in Chemical Engineering

In addition to the required courses, students in Chemical Engineering may study certain fields in depth by choosing appropriate program elective courses. The following lists elective streams that are currently available in Chemical Engineering:

Note: The following elective streams apply to Chemical Engineering Traditional Program and Co-op Plan II. Due to course scheduling difficulties, these elective streams do not apply to Co-op Plan I.

1. Mineral Processing and Extractive Metallurgy: This Elective Stream is offered in collaboration with Materials Engineering. Metallic and nonmetallic materials such as gold, copper, iron (steel) and ceramics are extracted from mineral resources. Mineral processing and extractive metallurgy is therefore an important engineering field that contributes to Canada’s economy. The Mineral Processing and Extractive Metallurgy Elective Stream will introduce students to the fundamental theories of mineral processing, hydrometallurgy, electrometallurgy and pyrometallurgy, and current practices of unit operations of these processes. The graduates from this elective pattern will be able to find employment in Canadian resource sectors, especially in oil sands, coal, base metal, precious metal, potash and diamond ore processing industries. The recommended courses for this elective stream are CME 421, CME 422 and CME 472.

2. Nanoscale Engineering: The Nanoscale Engineering Elective Stream consists of 4 courses which are taken in the four program elective slots available in the Chemical Engineering program. The recommended courses for this stream are: MAT E 211 and three of CH E 487, CH E 583, CH E 584 and MAT E 495. These courses expose Chemical Engineering students to topics in which understanding of the small-scale structures of materials are necessary for understanding the macroscopic processes associated with these nanostructures. It also provides the students with an introduction to the tools available for probing the properties of these nanostructures.

3. Polymer Materials: This Elective Stream is offered in collaboration with Materials Engineering. The Polymer Materials Elective Stream is designed for students who are interested in acquiring a basic knowledge in the field of polymers: structure-property relationships, polymerization reactions and polymer processing so that upon completion of the Stream, they will have the knowledge to embark on graduate level research in polymer science and engineering and will be employable by polymer manufacturers and polymer processing industry. The recommended courses for this elective stream are CME 482, CME 484 and CME 485.

Required Courses and Suggested Course Sequence for Traditional Programs

Chemical

Year 2

<table>
<thead>
<tr>
<th>Term 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CH E 243 - Engineering Thermodynamics</td>
</tr>
<tr>
<td>• CHEM 261 - Organic Chemistry I</td>
</tr>
<tr>
<td>• CME 200 - Introduction to Chemical and Materials Engineering</td>
</tr>
<tr>
<td>• CME 265 - Process Analysis</td>
</tr>
<tr>
<td>• English Elective (3-0-0)</td>
</tr>
<tr>
<td>• MATH 209 - Calculus III</td>
</tr>
<tr>
<td>• Complementary Studies Elective (3-0-0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CH E 312 - Fluid Mechanics</td>
</tr>
</tbody>
</table>
Year 2

Term 3

- BIOL 107 - Introduction to Cell Biology
- CH E 243 - Engineering Thermodynamics
- CME 200 - Introduction to Chemical and Materials Engineering
- CME 265 - Process Analysis
- CHEM 261 - Organic Chemistry I
- English Elective (3-0-0)
- MATH 209 - Calculus III

Term 4

- BIOCH 200 - Introductory Biochemistry OR
- BIOL 201 - Eukaryotic Cellular Biology OR
- CELL 201 - Introduction to Molecular Cell Biology
- ECE 209 - Fundamentals of Electrical Engineering
- MAT E 202 - Materials Science II
- MATH 201 - Differential Equations
- STAT 235 - Introductory Statistics for Engineering
- CH E 312 - Fluid Mechanics

Year 3

Term 5

- CH E 314 - Heat Transfer
- CH E 343 - Chemical Engineering Thermodynamics
- CH E 351 - Chemical Engineering Laboratory
- CH E 374 - Computational Methods in Engineering
- ENGG 404 - Engineering Safety and Loss Management

Term 6

- CH E 318 - Mass Transfer
- CH E 345 - Chemical Reactor Analysis I
- CH E 358 - Process Data Analysis
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers

Year 4

Term 7

- CH E 446 - Process Dynamics and Control
- CH E 464 - Chemical Engineering Design II
- CME 481 - Colloquium I
- PHIL 386 - Health Care Ethics
- Complementary Studies Elective (3-0-0)
- ITS Elective (3-0-0)

Term 8

- CH E 454 - Chemical Engineering Project Laboratory
- CH E 465 - Chemical Engineering Design II
- CME 483 - Colloquium II
- ENGG 400 - The Practice of the Engineering Profession
- Program Elective (3-1s-0)
- Program Elective (3-1s-0)

Notes
1. See Program and Technical Electives for restrictions on the four program electives.
2. Students who are interested in taking Nanoscale Engineering, Mineral Processing and Extractive Metallurgy, or Polymer Materials Elective streams should consult the Department for course schedules.

Chemical: Biomedical Option

Year 2

Term 3

- BIOL 107 - Introduction to Cell Biology
- CH E 243 - Engineering Thermodynamics
- CME 200 - Introduction to Chemical and Materials Engineering
- CME 265 - Process Analysis
- CHEM 261 - Organic Chemistry I
- English Elective (3-0-0)
- MATH 209 - Calculus III

Term 4

- BIOCH 200 - Introductory Biochemistry OR
- BIOL 201 - Eukaryotic Cellular Biology OR
- CELL 201 - Introduction to Molecular Cell Biology
- ECE 209 - Fundamentals of Electrical Engineering
- MAT E 202 - Materials Science II
- MATH 201 - Differential Equations
- STAT 235 - Introductory Statistics for Engineering
- CH E 312 - Fluid Mechanics

Year 3

Term 5

- CH E 314 - Heat Transfer
- CH E 343 - Chemical Engineering Thermodynamics
- CH E 351 - Chemical Engineering Laboratory
- CH E 374 - Computational Methods in Engineering
- CH E 446 - Process Dynamics and Control
- ENGG 404 - Engineering Safety and Loss Management
Term 6
- CH E 316 - Equilibrium Stage Process
- CH E 318 - Mass Transfer
- CH E 345 - Chemical Reactor Analysis I
- CH E 358 - Process Data Analysis
- CH E 472 - Modelling Process Dynamics
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers

Year 4
- CH E 404 - Chemical Engineering Design I
- CME 401 - Colloquium I (3-0-2)
- Program Elective (3-0-0)
- Complementary Studies Elective (3-0-0)

Term 8
- CH E 435 - Oil Sands Engineering Design
- CH E 484 - Chemical Engineering Project Laboratory
- CH E 534 - Fundamentals of Oil Sands Extraction
- CME 483 - Colloquium II
- ENGG 400 - The Practice of the Engineering Profession
- Program Elective (3-0-0)

Note: See Program and Technical Electives for restrictions on the program electives.

Required Courses and Suggested Course Sequence for Co-op Programs

Chemical Plan I

Year 2

Fall Term 3
- CH E 243 - Engineering Thermodynamics
- CME 200 - Introduction to Chemical and Materials Engineering
- CHEM 261 - Organic Chemistry I
- ENGG 299 - Orientation to Cooperative Education
- MAT E 202 - Materials Science II
- STAT 235 - Introductory Statistics for Engineering

Winter Term 4
- CME 265 - Process Analysis
- CH E 465 - Chemical Engineering Design II
- CH E 573 - Digital Signal Processing for Chemical Engineers
- CH E 576 - Intermediate Process Control
- CME 483 - Colloquium II
- ENGG 400 - The Practice of the Engineering Profession

Summer
- WKEXP 901 - Engineering Work Experience I

Year 3

Fall
- WKEXP 902 - Engineering Work Experience II

Winter Term 5
- CH E 314 - Heat Transfer
- CH E 343 - Chemical Engineering Thermodynamics
- CH E 351 - Chemical Engineering Laboratory
- CH E 374 - Computational Methods in Engineering
- Program Elective (3-0-0)

Summer Term 6
- CH E 316 - Equilibrium Stage Process
- CH E 318 - Mass Transfer
- CH E 345 - Chemical Reactor Analysis I
- CH E 358 - Process Data Analysis
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- ENGG 404 - Engineering Safety and Loss Management

Year 4

Fall
- WKEXP 903 - Engineering Work Experience III

Winter Term 7
- CH E 445 - Chemical Reactor Analysis II
- CH E 446 - Process Dynamics and Control
- CH E 464 - Chemical Engineering Design I
- CME 401 - Colloquium I
• Program Elective (3-1s-0)
• Complementary Studies Elective (3-0-0)
• Summer
• WKEXP 904 - Engineering Work Experience IV

Year 5

Fall
• WKEXP 905 - Engineering Work Experience V
Winter Term 8
• CH E 454 - Chemical Engineering Project Laboratory
• CH E 465 - Chemical Engineering Design II
• CME 483 - Colloquium II
• ENGG 400 - The Practice of the Engineering Profession
• Program Elective (3-1s-0)
• Program Elective (3-1s-0)

Note: See Program and Technical Electives for restrictions on the four program electives.

Chemical Plan II

Year 2

Fall Term 3
• CH E 243 - Engineering Thermodynamics
• CHEM 261 - Organic Chemistry I
• CME 200 - Introduction to Chemical and Materials Engineering
• CME 265 - Process Analysis
• ENGG 299 - Orientation to Cooperative Education
• English Elective (3-0-0)
• MATH 209 - Calculus III
• Complementary Studies Elective (3-0-0)
• Winter
• WKEXP 901 - Engineering Work Experience I

Summer Term 4
• CH E 312 - Fluid Mechanics
• ECE 209 - Fundamentals of Electrical Engineering
• MAT E 202 - Materials Science II
• MATH 201 - Differential Equations
• ENG M 310 - Engineering Economy
• ENG M 401 - Financial Management for Engineers
• STAT 235 - Introductory Statistics for Engineering

Year 3

Fall Term 5
• CH E 314 - Heat Transfer
• CH E 343 - Chemical Engineering Thermodynamics
• CH E 351 - Chemical Engineering Laboratory
• CH E 374 - Computational Methods in Engineering
• Program Elective (3-0-0)
• Winter
• WKEXP 902 - Engineering Work Experience II

Summer
• WKEXP 903 - Engineering Work Experience III

Year 4

Fall Term 6
• CH E 316 (3-0-2)
• CH E 318 - Mass Transfer
• CH E 345 - Chemical Reactor Analysis I
• CH E 358 - Process Data Analysis
• ITS Elective (3-0-0)
• ENGG 404 - Engineering Safety and Loss Management

Winter Term 7
• CH E 445 - Chemical Reactor Analysis II
• CH E 446 - Process Dynamics and Control
• CH E 465 - Chemical Engineering Design I
• CME 481 - Colloquium II
• Program Elective (3-1s-0)
• Complementary Studies Elective (3-0-0)

Year 5

Fall
• WKEXP 905 - Engineering Work Experience V
Winter Term 8
• CH E 454 - Chemical Engineering Project Laboratory
• CH E 465 - Chemical Engineering Design II
• CME 483 - Colloquium II
• ENGG 400 - The Practice of the Engineering Profession
• Program Elective (3-1s-0)
• Program Elective (3-1s-0)

Notes
1. See Program and Technical Electives for restrictions on the four program electives.
2. Students who are interested in taking the Nanoscale Engineering, Mineral Processing and Extractive Metallurgy, or Polymer Materials Elective Streams should consult the Department for course schedules.

Chemical Plan II: Biomedical Option

Year 2

Fall Term 3
• BIOL 107 - Introduction to Cell Biology
• CH E 243 - Engineering Thermodynamics
• CHEM 261 - Organic Chemistry I
• CME 200 - Introduction to Chemical and Materials Engineering
• CME 265 - Process Analysis
• ENGG 299 - Orientation to Cooperative Education
• English Elective (3-0-0)
• MATH 209 - Calculus III
• Winter
• WKEXP 901 - Engineering Work Experience I

Summer Term 4
• CH E 312 - Fluid Mechanics
• ECE 209 - Fundamentals of Electrical Engineering
• ENG M 310 - Engineering Economy
• ENG M 401 - Financial Management for Engineers
• MAT E 202 - Materials Science II
• MATH 201 - Differential Equations
• STAT 235 - Introductory Statistics for Engineering

Year 3

Fall Term 5
• BIOCH 200 - Introductory Biochemistry
• BIOL 201 - Eukaryotic Cellular Biology
• CELL 201 - Introduction to Molecular Cell Biology
• CH E 314 - Heat Transfer
• CH E 343 - Chemical Engineering Thermodynamics
• CH E 351 - Chemical Engineering Laboratory
• CH E 374 - Computational Methods in Engineering
• ENGG 404 - Engineering Safety and Loss Management
• Winter
• WKEXP 902 - Engineering Work Experience II

Summer
• WKEXP 903 - Engineering Work Experience III

Year 4

Fall Term 6
• BME 320 - Human Anatomy and Physiology: Cells and Tissue
• CH E 316 - Equilibrium Stage Process
• CH E 318 - Mass Transfer
• CH E 345 - Chemical Reactor Analysis I
• CH E 358 - Process Data Analysis
• PHIL 386 - Health Care Ethics
Year 4

Fall
- WKEXP 903 - Engineering Work Experience III

Winter Term 7
- CH E 464 - Chemical Engineering Design I
- CH E 472 - Modelling Process Dynamics
- CME 481 - Colloquium I
- Program Elective (3-1s-0)
- ITS Elective (3-0-0)

Summer
- WKEXP 904 - Engineering Work Experience IV

Year 5

Fall
- WKEXP 905 - Engineering Work Experience V

Winter Term 8
- CH E 454 - Chemical Engineering Project Laboratory
- CH E 465 - Chemical Engineering Design II
- CH E 573 - Digital Signal Processing for Chemical Engineers
- CH E 576 - Intermediate Process Control
- CME 483 - Colloquium II
- ENGG 400 - The Practice of the Engineering Profession

Notes
1. MATH 201 must be taken in either Term 3 or 4.
2. See Program and Technical Electives for restrictions on the program electives.

Chemical: Oil Sands Elective (Co-op)

Year 2

Fall Term 3
- CH E 243 - Engineering Thermodynamics
- CH E 312 - Fluid Mechanics
- CME 265 - Process Analysis
- MATH 201 - Differential Equations
- STAT 235 - Introductory Statistics for Engineering
- Summer
- WKEXP 901 - Engineering Work Experience I

Winter Term 4
- CH E 243 - Engineering Thermodynamics
- CH E 312 - Fluid Mechanics
- CME 265 - Process Analysis
- MATH 201 - Differential Equations
- STAT 235 - Introductory Statistics for Engineering
- Summer
- WKEXP 901 - Engineering Work Experience I

Year 3
- Fall
- WKEXP 902 - Engineering Work Experience II

Winter Term 5
- CH E 314 - Heat Transfer
- CH E 343 - Chemical Engineering Thermodynamics
- CH E 351 - Chemical Engineering Laboratory
- CH E 374 - Computational Methods in Engineering
- CH E 446 - Process Dynamics and Control
- Complementary Studies Elective (3-0-0)

Summer Term 6
- CH E 316 (3-0-2)
- CH E 318 - Mass Transfer
- CH E 345 - Chemical Reactor Analysis I
- CH E 398 - Process Data Analysis
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- ENGG 404 - Engineering Safety and Loss Management

Year 4

Fall
- WKEXP 903 - Engineering Work Experience III

Winter Term 7
- CH E 464 - Chemical Engineering Design I
- CH E 472 - Modelling Process Dynamics
- CME 481 - Colloquium I
- Program Elective (3-1s-0)
- ITS Elective (3-0-0)

Summer
- WKEXP 904 - Engineering Work Experience IV

Year 5

Fall
- WKEXP 905 - Engineering Work Experience V

Winter Term 8
- CH E 454 - Chemical Engineering Project Laboratory
- CH E 465 - Chemical Engineering Design II
- CH E 573 - Digital Signal Processing for Chemical Engineers
- CH E 576 - Intermediate Process Control
- CME 483 - Colloquium II
- ENGG 400 - The Practice of the Engineering Profession

Notes
1. MATH 201 must be taken in either Term 3 or 4.
2. See Program and Technical Electives for restrictions on the program electives.

Chemical: Computer Process Control Option (Co-op)

Year 2

Fall Term 3
- CHEM 261 - Organic Chemistry I
- CME 200 - Introduction to Chemical and Materials Engineering
- ECE 202 - Electrical Circuits I
- ECE 210 - Introduction to Digital Logic Design
- ENGG 299 - Orientation to Cooperative Education
- MAT E 202 - Materials Science II
- MATH 209 - Calculus III
- Complementary Studies Elective (3-0-0)

Winter Term 4
- CH E 243 - Engineering Thermodynamics
- CHEM 261 - Organic Chemistry I
- CME 200 - Introduction to Chemical and Materials Engineering
- CME 265 - Process Analysis
- ENGG 299 - Orientation to Cooperative Education
- MAT E 202 - Materials Science II
- MATH 209 - Calculus III
- Complementary Studies Elective (3-0-0)

Year 3
- Fall
- WKEXP 902 - Engineering Work Experience II

Winter Term 5
- CH E 314 - Heat Transfer
- CH E 343 - Chemical Engineering Thermodynamics
- CH E 351 - Chemical Engineering Laboratory
- CH E 374 - Computational Methods in Engineering
- CH E 446 - Process Dynamics and Control
- Complementary Studies Elective (3-0-0)

Summer Term 6
- CH E 316 (3-0-2)
- CH E 318 - Mass Transfer
- CH E 345 - Chemical Reactor Analysis I
- CH E 398 - Process Data Analysis
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- ENGG 404 - Engineering Safety and Loss Management
Year 4

Fall Term 6

- CH E 316 (3-0-2)
- CH E 318 - Mass Transfer
- CH E 345 - Chemical Reactor Analysis I
- CH E 358 - Process Data Analysis
- ITS Elective (3-0-0)
- ENGG 404 - Engineering Safety and Loss Management

Winter Term 7

- CH E 445 - Chemical Reactor Analysis II
- CH E 446 - Process Dynamics and Control
- CH E 464 - Chemical Engineering Design I
- CH E 522 - Fundamentals of Oil Sands Upgrading
- CME 481 - Colloquium I
- Complementary Studies Elective (3-0-0)

Summer

- WKEXP 904 - Engineering Work Experience IV

Year 5

Fall

- WKEXP 905 - Engineering Work Experience V

Winter Term 8

- CH E 435 - Oil Sands Engineering Design
- CH E 454 - Chemical Engineering Project Laboratory
- CH E 534 - Fundamentals of Oil sands Extraction
- CME 483 - Colloquium II
- ENGG 400 - The Practice of the Engineering Profession
- Program Elective (3-1s-0)

Note: See Program and Technical Electives for restrictions on the program electives.

Program and Technical Electives

Chemical

Chemical (Program and Technical Electives)

Of the four single-term program electives

Exactly one must be a “Science” elective selected from:

- BIOL 107 - Introduction to Cell Biology
- BIOL 108 - Introduction to Biological Diversity
- CHEM 211 - Quantitative Analysis I
- CHEM 263 - Organic Chemistry II
- EAS 100 - Planet Earth
- EAS 210 - Engineering Earth Science
- PHYS 230 - Electricity and Magnetism
- PHYS 244 - Mechanics
- PHYS 271 - Introduction to Modern Physics

At least two must be Engineering Science and/or Engineering Design courses selected from:

- BME 320 - Human Anatomy and Physiology: Cells and Tissue
- BME 321 - Human Anatomy and Physiology: Systems
- CME 421 - Mineral Processing
- CME 422 - Interfacial Engineering in Mineral Processing
- CME 458 - Special Projects in Chemical and Materials Engineering I (see Note)
- CME 459 - Special Projects in Chemical and Materials Engineering II (see Note)
- CME 472 - Extractive Metallurgy
- CME 482 - Fundamentals of Polymers
- CME 484 - Polymer Processing
- CME 485 - Polymerization Reactions
- CME 494 - Special Topics in Chemical and Materials Engineering
- CME 496
- CH E 420 - Mixing in the Process Industries
- CH E 482
- CH E 484 - Introduction to Biochemical Engineering
- CH E 485 - Fuel Cells and Their Applications
- CH E 487
- CH E 494 - Special Topics in Chemical Engineering
- CH E 496 - Special Topics in Process Dynamics and Control
- CH E 512 - Introduction to Fluid-Particle Systems
- CH E 522 - Fundamentals of Oil Sands Upgrading
- CH E 534 - Fundamentals of Oilsands Extraction
- CH E 572
- CH E 573 - Digital Signal Processing for Chemical Engineers
- CH E 576 - Intermediate Process Control
- CH E 580
- CH E 582 - Introduction to Biomaterials
- CH E 583 - Surfaces and Colloids
- CH E 584 - Molecular Sieve Technology
- CH E 594
- CH E 596
- CIV E 270 - Mechanics of Deformable Bodies I
- CIV E 321 - Principles of Environmental Modeling and Risk
- ECE 203 - Electrical Circuits II
- ECE 210 - Introduction to Digital Logic Design
- ECE 212 - Introduction to Microprocessors
- ENGG 406 - Engineering Safety and Risk Management
- ENG M 501 - Production and Operations Management
- ENG M 530 - Engineering Project Management
- ENV E 302 - Environmental Impact Assessment
- MAT E 335 - Phase Transformations I
- MAT E 336 - Phase Transformations II
- MAT E 341 - Applied Electrochemistry
- MAT E 345 - Corrosion, Oxidation, and Degradation
- MAT E 351 - Mechanical Properties
- MAT E 466 - Special Topics in Materials Engineering
- MAT E 471 - Ceramics
- MAT E 473
- MAT E 474 - Performance of Materials
- MAT E 491 - Solid State Physics of Materials
- MAT E 494 - Nanostructured Materials
- MAT E 495 - Nanomaterials and Biomedical Applications
- MEC E 250 - Engineering Mechanics II
- MEC E 443 - Energy Conversion
- MGSC 405 - Forecasting for Planners and Managers
- MIN E 310 - Ore Reserve Evaluation
- PET E 364 - Drilling Engineering
- PET E 365 - Well Logging and Formation Evaluation
- PET E 366 - Petroleum Production Operations
- PET E 475 - Applied Reservoir Engineering

Note: CME 458 or CME 459 may only be taken with an appropriate project approved by the department.

No more than one single-term program elective may be selected from the following approved list:

- BIOCH 200 - Introductory Biochemistry
- BIOL 201 - Eukaryotic Cellular Biology
- BIOL 208 - Principles of Ecology
- BIOL 381 - A Planet in Crisis
- BOT 340 - Plant Physiology
- CELL 201 - Introduction to Molecular Cell Biology
- CHEM 211 - Quantitative Analysis I
- CHEM 213 - Quantitative Analysis II
- CHEM 303 - Environmental Chemistry I
- CHEM 333 - Inorganic Materials Chemistry
- CHEM 479 - Molecular Kinetics
- CHEM 495 - Molecular Dynamics and its Applications
- EAS 201 - Earth Science I
- EAS 209 - Geology of Western Canada and the National and Provincial Parks
- MATH 225 - Linear Algebra II
- MATH 241 - Geometry
- MATH 300 - Advanced Boundary Value Problems I
- MATH 309 - Mathematical Methods for Electrical Engineers
- MATH 311 - Theory of Functions of a Complex Variable
- MATH 337 - Introduction to Partial Differential Equations
- MATH 371 - Mathematical Modelling in the Life Sciences
- MATH 373 - Mathematical Programming and Optimization I
- MATH 374 - Mathematical Programming and Optimization II
- MGTSC 405 - Forecasting for Planners and Managers
- MICRB 265 - General Microbiology
- MICRB 311 - Microbial Physiology
Chemical: Biomedical Option (Program and Technical Electives)

The two single-term program electives must be selected from the following: CH E 487, CH E 583, CH E 584 and MAT E 495 with appropriate project approved by department.

Admission requirements for the Doctor of Medicine (MD) degree program include a specific number of course units in various core subjects. This information can be found in Academic Requirements. Students in the Biomedical Option who plan to apply to the MD degree program must select their electives carefully to obtain the necessary credit for required subjects. It may also be necessary to take courses over and above those included in the Biomedical Option to meet the course unit requirements in all of the core subjects required for Medicine. Students in the Biomedical Option who plan to apply for admission to the MD degree program should contact their program advisor in the Fall term of second year for guidance on the selection of appropriate electives and any specific courses which would be in addition to those required for the engineering degree.

Chemical: Computer Process Control Option (Program and Technical Electives)

The two single-term program electives must be selected from lists in Chemical. At least one of these electives must be Engineering Science and/or Engineering Design in Chemical. Other courses may be taken with written permission from the current Computer Process Control Advisor prior to enrollment.

Complementary Studies Electives

To better understand the role of Engineering within a broader social context, all programs require an element of complementary studies consisting of the humanities, social sciences, arts, management, engineering economics and communications. Aspects of these topics are covered in mandatory courses, but each program contains complementary studies electives so that students may explore areas of particular interest. Notwithstanding this, the Canadian Engineering Accreditation Board requires that programs include exposure to the central thought processes of the humanities and social sciences. One Complementary Studies Elective must be taken from List 1, normally in the First Year of the program. Further Complementary Studies Electives must be at the 200-level or above and should be selected from List 2 (see Course Listings for course descriptions and prerequisites). Note that in some cases, a course may appear on both a complementary studies list and as a program required or program elective course. A single course cannot be used to satisfy multiple course requirements under Programs of Study.

List 1 (First year)

- ANTHR 101 - Introductory Anthropology
- ANTHR 110 - Gender, Age, and Culture
- ANTHR 150 - Race and Racism
- CLASS 102 - Greek and Roman Mythology
- CLASS 103 - Introduction to Ancient Greece
- CLASS 104 - Introduction to Ancient Rome
- CLASS 110 - The Ancient World
- ECON 101 - Introduction to Microeconomics
- ECON 102 - Introduction to Macroeconomics
- ECON 204 - Principles of Economics
- ENGL 121 *
- ENGL 122 *
- ENGL 123 *
- ENGL 124 *
- ENGL 125 - Aboriginal Writing *
- HIST 110 - The Pre-Medieval World
- HIST 111 - The Early Modern World
- HIST 112 - The Modern World
- HIST 114 - The History of the World in the Last 10 Years
- HIST 115 - Technology and History
- HIST 116 - The Emergence of the Atlantic World
- LING 100
- LING 101 - Introduction to Linguistic Analysis
- PHIL 120 - Symbolic Logic I
- PHIL 125 - Practical Logic
- POL S 101 - Introduction to Politics
- PSYCO 104 - Basic Psychological Processes
- SOC 100 - Introductory Sociology

Note: *A single D3 ENGL course cannot satisfy both a Complementary Studies Elective and the English Elective requirements.

List 2 (Second and higher years)

- ACCTG 300 - Introduction to Accounting
- ACCTG 311 - Introduction to Accounting for Financial Performance
- ANTHR 200 - Anthropology of Science, Technology, and Environment
- AREC 385 - Natural Resource Economics
- B LAW 301 - Legal Foundations of the Canadian Economy **
- B LAW 422 - Law of Business Organizations
- B LAW 428 - Natural Resource and Environmental Law ***
- B LAW 432 - The Legal Regulation of Business
- CHRTC 350 - Science and Religion: Christian Perspectives
- CLASS 254 - Introduction to Greek Art and Archaeology
- CLASS 255 - Introduction to Roman Art and Archaeology
- CLASS 283 - Introductory Roman History II
- CLASS 294 - Ancient Science, Technology, and Medicine
- CLASS 376 - Early Civilization I
- ECON 204 - Principles of Economics
- ECON 281 - Intermediate Microeconomic Theory I
- ECON 282 - Intermediate Macroeconomic Theory I
Civil Engineering

Civil engineers apply science in planning, designing, constructing, operating, or managing airports, buildings, bridges, harbors, highways, flood control structures, transit systems, water supply and distribution systems, waste collection and storm drainage, and other public works. Today, civil engineers are asked to meet the challenges of pollution, deteriorating urban infrastructure, traffic congestion, energy needs, urban development, and community planning.

Civil engineering offers an unlimited range of career opportunities to satisfy individual interests, aptitudes, and goals. Civil engineers can specialize in one field or a combination of many technical specialties. They can direct their efforts into planning, design, construction, research, teaching, sales, or management.

The University of Alberta curriculum provides the preparation required for a career in civil engineering. All students take a core program that provides the basis for professional practice in the Civil Engineering disciplines of construction, environmental, geotechnical, structural, surveying, transportation, and water resources. Students then select elective courses in the fourth year to permit some specialization in these disciplines.

Disciplines in Civil Engineering

Construction Engineering

Construction engineers combine engineering and management disciplines to plan and execute projects. They apply their knowledge of construction methods and equipment to ensure that work is completed on time, within budget, safely, and in accordance with design specifications. Construction engineers lead a team of financial planners, technicians, tradespeople, and professional engineers from other disciplines.

Environmental Engineering

Environmental engineers incorporate principles of chemistry, biology, microbiology, mathematics, chemical engineering, and civil engineering to provide technological solutions to environmental problems such as water pollution control, providing safe drinking water, disposal and recycling of solid wastes, and hazardous waste. In addition, environmental engineers are concerned about the provisions of municipal services such as sewers, water mains, and solid waste collection.

Geotechnical Engineering

Geotechnical engineers analyze, in the field and in the laboratory, the properties of soils and rock that support and affect the behavior of structures, pavement, and underground facilities. They evaluate potential settlement of buildings, stability of slopes and fills, analysis of landslides, groundwater seepage, and effects of earthquakes. Geotechnical engineers and structural engineers design the construction of dams, foundations of buildings, and tunnels.

Structural Engineering

Structural engineers plan and design various structures, including buildings, bridges, storage tanks, containment facilities, and towers. They analyze the forces that each structure must resist, select the appropriate construction materials (concrete, steel, timber, or other materials) and proportion all members and connections to produce a safe and economical structure. Structural engineers also plan and supervise the construction of these structures.

Surveying Engineering

Surveying engineers make precise measurements of the earth’s surface to obtain reliable information for locating and designing engineering projects. They use data from satellites, aerial and terrestrial photogrammetry, and...
computerprocessed satellite imagery. Their maps give accurate information for building highways and dams, boring tunnels, plotting flood control and irrigation projects, and for all other areas of civil engineering.

Transportation Engineering

Transportation engineers plan and design the safe and efficient movement of people and goods. They construct and manage all types of transportation facilities.

Water Resources Engineering

Water resources engineers use their expertise in areas such as hydraulics, hydrology, fluid mechanics, coastal and river engineering, water resources management and planning, and mathematics and computer analysis to solve problems associated with the control and use of water. This includes flood control and protection, water distribution and wastewater collection systems, hydroelectric power development, road and pipeline river crossings, irrigation, drainage, coastal and bank erosion protection, and marine and river navigation facilities.

Environmental Engineering Option in Civil Engineering

Interest in design, construction, operation, and maintenance of developments with minimal effect on public and environmental health for all aspects of the biosphere is a major component of engineering. The ability to incorporate the principles of chemistry, biology, microbiology, mathematics, chemical engineering, and civil engineering to provide project analysis, technological solutions, risk assessment, impact minimization, and environmental management are the essentials of environmental engineering. The most common areas of interest are safe drinking water provision, water pollution control, solid and hazardous wastes disposal and recycling, and air quality control in industrial and municipal environments. Environmental engineers are also involved in providing municipal components such as water mains, sewers, storm sewers, and solid waste collection.

Enrolment is limited.

Biomedical Engineering Option in Civil Engineering

This option is intended to provide students with the background necessary to start their career in Civil Engineering with a good basic understanding of the Biomedical Engineering disciplines. Core courses in the Civil Engineering Program (surveying, construction engineering and management, transportation engineering and engineering law) are replaced by fundamental courses in biology and medicine. This option is intended to better prepare students for graduate studies in biomedical engineering and for employment in the health care industry, especially in the area of biomechanical engineering, bone engineering and biological processes. The curriculum has also provided necessary requirements to allow successful students to apply to the MD program.

Required Courses and Suggested Course Sequence for Traditional Programs

Civil

Year 2

Term 3

- CIV E 265 - Engineering Drawing and Computer Graphics
- CIV E 270 - Mechanics of Deformable Bodies I
- EAS 210 - Engineering Earth Science
- MAT E 202 - Materials Science II
- MATH 209 - Calculus III

Term 4

- CIV E 221 - Environmental Engineering Fundamentals
- CIV E 240 - Technical Communications
- CIV E 295 - Civil Engineering Analysis II
- CIV E 296 - Civil Engineering Analysis II
- MATH 201 - Differential Equations
- STAT 235 - Introductory Statistics for Engineering

Note: *Held in Spring/Summer (Spring Term)
Civil: Environmental Engineering Option

Year 2

Term 3
- CIV E 265 - Engineering Drawing and Computer Graphics
- CIV E 270 - Mechanics of Deformable Bodies I
- EAS 210 - Engineering Earth Science
- ENV E 220 - Environmental Chemistry for Engineering
- MATH 209 - Calculus III

Term 4
- CIV E 240 - Technical Communications
- CIV E 250 - Plane Surveying
- CIV E 251 - Survey School *
- CIV E 295 - Civil Engineering Analysis II
- ENV E 251 - Properties of Environmental Engineering Materials
- MATH 201 - Differential Equations
- STAT 235 - Introductory Statistics for Engineering

Note: Held in Spring/Summer (Spring Term)

Term 5
- CH E 243 - Engineering Thermodynamics
- CIV E 330 - Introduction to Fluid Mechanics
- CIV E 372 - Structural Analysis I
- CIV E 395 - Civil Engineering Analysis III
- ENV E 322 - Environmental Protection
- ENV E 324 - Biological Processes

Term 6
- CIV E 331 - Applied Hydraulics
- CIV E 381 - Soil Mechanics
- ENV E 302 - Environmental Impact Assessment
- ENV E 325 - Chemical and Physical Processes
- ENGG 404 - Engineering Safety and Loss Management

Required Courses and Suggested Course Sequence for Co-op Programs

Civil (Co-op)

Year 3

Fall Term
- CIV E 265 - Engineering Drawing and Computer Graphics
- CIV E 270 - Mechanics of Deformable Bodies I
- ENGG 299 - Orientation to Cooperative Education
- EAS 210 - Engineering Earth Science
- MAT E 202 - Materials Science II
- MATH 209 - Calculus III

Winter Term
- CIV E 221 - Environmental Engineering Fundamentals
- CIV E 240 - Technical Communications
- CIV E 250 - Plane Surveying
- CIV E 251 - Survey School *
- CIV E 295 - Civil Engineering Analysis II
- MATH 201 - Differential Equations
- STAT 235 - Introductory Statistics for Engineering

Note: Held in Spring/Summer (Spring Term)

Summer
- WKEXP 901 - Engineering Work Experience I

Year 4

Fall Term
- WKEXP 902 - Engineering Work Experience II

Winter Term
- CIV E 303 - Project Management
- CIV E 315 - Transportation Engineering
- CIV E 321 - Principles of Environmental Modeling and Risk
- CIV E 330 - Introduction to Fluid Mechanics
- CIV E 372 - Structural Analysis I
- CIV E 395 - Civil Engineering Analysis III

Summer
- WKEXP 903 - Engineering Work Experience III

Year 5

Fall Term
- CIV E 331 - Applied Hydraulics
- CIV E 374 - Structural Design I
- CIV E 381 - Soil Mechanics
• CIV E 301 - Civil Engineering Materials
• CIV E 308 - Introduction to Continuum Mechanics
• English Elective (3-0-0)

Winter
• WKEXP 904 - Engineering Work Experience IV

Summer
• WKEXP 905 - Engineering Work Experience V

Year 5

Fall Term 7
• Program Elective (See Note)
• Program Elective (See Note)
• Program Elective (See Note)
• ENG 4404

One of
• ECE 209 - Fundamentals of Electrical Engineering
• MEC E 250 - Engineering Mechanics II
• CH E 243 - Engineering Thermodynamics

Winter Term 8
• ENG M 310 - Engineering Economy OR
• ENG M 401 - Financial Management for Engineers
 •
• ENGG 400 - The Practice of the Engineering Profession
• ENGG 420 - Engineering Law
• Program Elective (See Note)
• Program Elective (See Note)
• ITS Elective (3-0-0)
• Note: See Program and Technical Electives for restrictions on the program electives.

Program and Technical Electives
Civil: Environmental Engineering Option (Co-op)

Year 2

Fall Term 3
• CIV E 265 - Engineering Drawing and Computer Graphics
• CIV E 270 - Mechanics of Deformable Bodies I
• ENGG 299 - Orientation to Cooperative Education
• ENV E 220 - Environmental Chemistry for Engineering
• EAS 210 - Engineering Earth Science
• MATH 209 - Calculus III

Winter Term 4
• CIV E 240 - Technical Communications
• CIV E 250 - Plane Surveying
• CIV E 251 - Survey School *
• CIV E 295 - Civil Engineering Analysis II
• ENV E 251 - Properties of Environmental Engineering Materials
• MATH 201 - Differential Equations
• STAT 235 - Introductory Statistics for Engineering

Note: *Held in Spring/Summer (Spring Term)

Summer
• WKEXP 901 - Engineering Work Experience I

Year 3

Fall
• WKEXP 902 - Engineering Work Experience II

Winter Term 5
• CIV E 330 - Introduction to Fluid Mechanics
• CIV E 395 - Civil Engineering Analysis III
• ENV E 302 - Environmental Impact Assessment
• ENV E 325 - Chemical and Physical Processes
• ENGG 404 - Engineering Safety and Loss Management

Summer
• WKEXP 903 - Engineering Work Experience III

Year 4

Fall Term 6
• CH E 243 - Engineering Thermodynamics
• CIV E 331 - Applied Hydraulics
• CIV E 372 - Structural Analysis I
• CIV E 381 - Soil Mechanics
• ENV E 322 - Environmental Protection
• ENV E 324 - Biological Processes

Winter
• WKEXP 904 - Engineering Work Experience IV

Summer
• WKEXP 905 - Engineering Work Experience V

Year 5

Fall Term 7
• CIV E 374 - Structural Design I
• ENV E 320 - Environmental Hydrology
• ENV E 421 - Municipal Systems
• ENV E 423 - Principles of Air Quality Management and Control
• ENV E 432 - Solid Waste Management

One of
• CIV E 524 - Environmental Biotechnology
• CIV E 526 - Soil Remediation
• CIV E 558 - Air Quality Assessment
• ENV E 400 - Advanced Environmental Engineering I
• ENV E 401 - Advanced Environmental Engineering II *

Note: *All courses may not be offered every year.

Winter Term 8
• ENG M 310 - Engineering Economy OR
• ENG M 401 - Financial Management for Engineers
 •
• ENGG 400 - The Practice of the Engineering Profession
• ENV E 434 - Environmental Geotechnics
• ENV E 440 - Facility Design
• LAW 399 - Introduction to Environmental Law
• ITS Elective (3-0-0)

One of
• ECE 209 - Fundamentals of Electrical Engineering
• MAT E 402 - Materials Science II
• MEC E 250 - Engineering Mechanics II

Civil (Program and Technical Electives)
• Five program electives are required

Three must be selected from
• CIV E 406 - Construction Estimating, Planning, and Control
• CIV E 411 - Transportation Engineering II
• CIV E 431 - Water Resources Engineering
• CIV E 474 - Structural Design II
• CIV E 481 - Soil Engineering
• ENV E 421 - Municipal Systems

and two from
• CIV E 409 - Construction Methods
• CIV E 419 - Transportation Engineering: Highway Planning and Design
• CIV E 429 - Environmental Engineering Design
• CIV E 439 - Water Resources Engineering Design
• CIV E 479 - Structural Design III
• CIV E 489 - Geotechnical Design

Civil: Biomedical Engineering Option (Program and Technical Electives)

Three program electives are required, with one each selected from groups (1), (2) and (3).

Group 1
• CIV E 431 - Water Resources Engineering
• CIV E 474 - Structural Design II
• CIV E 481 - Soil Engineering
• ENV E 421 - Municipal Systems
Group 2
- CIV E 429 - Environmental Engineering Design
- CIV E 439 - Water Resources Engineering Design
- CIV E 479 - Structural Design III
- CIV E 489 - Geotechnical Design

Group 3
- BIOL 207 - Molecular Genetics and Heredity
- BME 513 - Imaging Methods in Medicine
- BME 553 - Rehabilitation Engineering: Assisted Movement After Injury
- CH E 484 - Introduction to Biochemical Engineering
- CHEM 263 - Organic Chemistry II
- MEC E 563 - Finite Element Method for Mechanical Engineering

Additional Information
Admission requirements for the Doctor of Medicine (MD) degree program include a specific number of course units in various core subjects. This information can be found in Academic Requirements. Students in the Biomedical Option who plan to apply to the MD degree program must select their electives carefully to obtain the necessary credit for required subjects. It may also be necessary to take courses over and above those included in the Biomedical Option to meet the course unit requirements in all of the core subjects required for Medicine. Students in the Biomedical Option who plan to apply for admission to the MD degree program should contact their program advisor in the Fall term of second year for guidance on the selection of appropriate electives and any specific courses which would be in addition to those required for the engineering degree.

Complementary Studies Electives
To better understand the role of Engineering within a broader social context, all programs require an element of complementary studies consisting of the humanities, social sciences, arts, management, engineering economics and communications. Aspects of these topics are covered in mandatory courses, but each program contains complementary studies electives so that students may explore areas of particular interest. Notwithstanding this, the Canadian Engineering Accreditation Board requires that programs include exposure to the central thought processes of the humanities and social sciences. One Complementary Studies Elective must be taken from List 1, normally in the First Year of the program. Further Complementary Studies Electives must be at the 200-level or above and should be selected from List 2 (see Course Listings for course descriptions and prerequisites). Note that in some cases, a course may appear both on a complementary studies list and as a program required or program elective course. A single course cannot be used to satisfy multiple course requirements under Programs of Study.

List 1 (First year)
- ANTHR 101 - Introductory Anthropology
- ANTHR 110 - Gender, Age, and Culture
- ANTHR 150 - Race and Racism
- CLASS 102 - Greek and Roman Mythology
- CLASS 103 - Introduction to Ancient Greece
- CLASS 104 - Introduction to Ancient Rome
- CLASS 110 - The Ancient World
- ECON 101 - Introduction to Microeconomics
- ECON 102 - Introduction to Macroeconomics
- ECON 204 - Principles of Economics
- ENGL 121 *
- ENGL 122 *
- ENGL 123 *
- ENGL 124 *
- ENGL 125 - Aboriginal Writing *
- HIST 110 - The Pre-Modern World
- HIST 111 - The Early Modern World
- HIST 112 - The Modern World
- HIST 114 - The History of the World in the Last 10 Years
- HIST 115 - Technology and History
- HIST 116 - The Emergence of the Atlantic World
- LING 100
- LING 101 - Introduction to Linguistic Analysis
- PHIL 120 - Symbolic Logic I
- PHIL 125 - Practical Logic
- POL S 101 - Introduction to Politics
- PSYCO 104 - Basic Psychological Processes
- SOC 100 - Introductory Sociology

Note: *A single D3 ENGL course cannot satisfy both a Complementary Studies Elective and the English Elective requirements.

List 2 (Second and higher years)
- ACCTG 300 - Introduction to Accounting
- ACCTG 311 - Introduction to Accounting for Financial Performance
- ANTHR 230 - Anthropology of Science, Technology, and Environment
- AREC 365 - Natural Resource Economics
- B LAW 301 - Legal Foundations of the Canadian Economy **
- B LAW 422 - Law of Business Organizations
- B LAW 426 - Natural Resource and Environmental Law ***
- B LAW 432 - The Legal Regulation of Business
- CHRTC 350 - Science and Religion: Christian Perspectives
- CLASS 254 - Introduction to Greek Art and Archaeology
- CLASS 255 - Introduction to Roman Art and Archaeology
- CLASS 283 - Introductory Roman History II
- CLASS 294 - Ancient Science, Technology, and Medicine
- CLASS 376 - Early Civilization I
- ECON 204 - Principles of Economics
- ECON 281 - Intermediate Microeconomic Theory I
- ECON 282 - Intermediate Macroeconomic Theory I
- ECON 355
- ENGR 420 - Engineering Law
- ENG M 402 - Project Management and Entrepreneurship
- ENG M 406 - Adapting Technology to Meet Societal Needs
- HECOL 211 - Human Sexuality
- HIST 260 - Pre-Confederation Canada
- HIST 261 - Post-Confederation Canada
- HIST 295 - 20th-Century Warfare
- HIST 396
- HIST 397 - History of Science I
- HIST 398 - History of Science II
- INT D 257
- INT D 303 - Economics of World Food and Agriculture
- LA ST 210 - South America
- LING 204 - English Syntax
- LING 205 - Phonetics
- MARK 301 - Introduction to Marketing
- OM 392 - Operations Management
- PHIL 205 - Philosophy of Mind
- PHIL 220 - Symbolic Logic II
- PHIL 250 - Contemporary Ethical Issues
- PHIL 265 - Philosophy of Science
- PHIL 325 - Risk, Choice, and Rationality
- PHIL 366 - Computers and Culture
- PHIL 375 - Science and Society
- PHIL 380 - Philosophy of Criticism
- POL S 220
- POL S 221
- POL S 225 - City Government and Politics
- POL S 266
- PSYCO 258 - Cognitive Psychology
- PSYCO 275 - Brain and Behavior
- R SOC 355 - Rural Communities and Global Economies
- R SOC 365 - Sociology of Environment and Development
- SMO 200 - Introduction to Management for Non-Business Students
- SMO 301 - Behavior in Organizations
- SOC 212 - Classical Social Theory
- SOC 224 - Sociology of Deviance and Conformity
- SOC 225 - Criminology
- SOC 241 - Social Psychology
- SOC 242
- SOC 251 - Population and Society
- SOC 301 - Sociology of Gender
- WGS 201

Notes:
- **Not available to Civil students
- ***Not available to Civil (Environmental Engineering Option) students.

A second course from the ITS List may be taken as part of List 2. However, a single course cannot be used to satisfy both the ITS and Complementary Studies requirements. This list is updated annually. Courses that teach a language or the application of a particular skill (such as courses in physical education, music and art) do not meet the intent of the Accreditation Board with respect to complementary studies and are therefore not eligible.
Impact of Technology on Society (ITS) Elective

A specific requirement of the Canadian Engineering Accreditation Board is study of the impact of technology on society. To meet this requirement, students must take one of the following:

- ENG M 403
- ENG M 405 - Engineering, Business and Society
- HIST 115 - Technology and History
- HIST 391 - History of Technology
- HGP 250 - Natural Resources and Environmental Management
- INT D 361 - Fundamentals of Energy, Environment and Sustainability
- PHIL 265 - Philosophy of Science
- PHIL 366 - Computers and Culture
- PHIL 375 - Science and Society
- STS 200 - Introduction to Studies in Science, Technology and Society
- SOC 366 - People in Industry
- SOC 363 - Sociology of Work and Industry

English Electives

Most engineering programs require a single-term (3-0-0) English course. This is typically ENGL 199, but ENGL 121, ENGL 122, ENGL 123, ENGL 124 and ENGL 125 are also acceptable.

Computer Engineering

Computer engineering is concerned with the design of computer systems for their many applications.

A computer system consists of hardware and software components, and the computer engineer must be knowledgeable in the design of both. The Computer Engineering program provides the fundamentals of hardware design through courses in electrical circuits, electronics, digital systems, computer organization, and microcomputer systems. The fundamentals of software design are provided through courses in data structures, algorithm design, operating systems, and software engineering. Students also take courses in the key application areas of computers, namely control systems and communication systems. Students may take several elective courses in Electrical Engineering and Computing Science.

Computer engineers are uniquely equipped in being educated to design computer systems where the hardware and software components are closely coupled, and where both components are critical to the design’s success. The background of our graduates is sufficiently broad that they are able to pursue careers in related areas, ranging from software design and systems analysis to electronics design.

Computer engineering draws on material from the two disciplines of electrical and computing science. Because of this, the Computer Engineering program is offered jointly by the Department of Electrical and Computer Engineering and the Department of Computing Science. The program is administered by the Department of Electrical and Computer Engineering.

Software Option in Computer Engineering

This option is concerned with the systematic and comprehensive development of software systems. The rapidly growing complexity of such systems along with their stringent requirements such as to their reliability, security, user-friendliness, maintainability, testability, portability, interoperability and cost-effectiveness is a challenge to the software industry. To prepare for this challenging and rewarding reality, the software option provides a balanced curriculum including the theoretical and applied foundations in computing, mathematics, physical science, the engineering sciences and current technology.

Computer engineers in the software field specify, describe, and analyze digital systems bridging the gaps between the digital world and real world. They develop small (such as remote control software) and large (e.g., the Internet) software systems. Starting from user requirements, they use sound engineering practices to construct, test, and maintain software artifacts. Programming is a relatively small phase of the overall project lifecycle.

The Software Option provides students with comprehensive foundations for this rapidly evolving field by dwelling on engineering design principles, the discrete and continuous mathematics, logic and the theory of software. It incorporates the best practices of the software industry. The course material is tightly coupled with practical exercises and experiments, using up-to-date industrial software development tools.

The Software Option is offered jointly by the Department of Electrical and Computer Engineering and the Department of Computing Science. The option is administered by the Department of Electrical and Computer Engineering.

Nanoscale System Design Option in Computer Engineering

This option provides an introduction to the processes involved in the fabrication of nanoscale integrated circuits and to the computer aided design (CAD) tools necessary for the engineering of large scale systems on a chip. By selecting this option, students will learn about fault tolerance in nanoscale systems and gain an understanding of quantum phenomena in systems design.

The option retains most of the core elements of the traditional Computer Engineering Program and contains a number of new offerings in the form of program electives. Changes from the Traditional Computer Engineering Program occur only after second year.

Required Courses and Suggested Course Sequence for Traditional Programs

Computer

Year 2

Term 3

- CMPTU 274 - Introduction to Tangible Computing I
- ECE 201 - Introduction to Electrical and Computer Engineering
- ECE 202 - Electrical Circuits I
- ECE 210 - Introduction to Digital Logic Design
- MATH 201 - Differential Equations
- MATH 209 - Calculus III
- English Elective

Term 4

- CMPTU 275 - Introduction to Tangible Computing II
- ECE 203 - Electrical Circuits II
- ECE 212 - Introduction to Microprocessors
- ECE 240 - Continuous Time Signals and Systems
- PHYS 230 - Electricity and Magnetism

Year 3

Term 5

- ECE 302 - Electronic Devices
- ECE 311 - Computer Organization and Architecture
- ECE 325 - Object-Oriented Software Design
- ECE 340 - Discrete Time Signals and Systems
- Group I Program Elective
- ENG M 310 - Engineering Economy OR ENG M 401 - Financial Management for Engineers

Term 6

- CMPTU 301 - Introduction to File and Database Management
- CMPTU 379 - Operating System Concepts
- ECE 315 - Computer Interfacing
- Complementary Studies Elective (3-0-0)
- Group II Program Elective
- ITS Elective (3-0-0)

Year 4

Term 7

- CMPTU 311 - Introduction to Software Engineering
- ECE 304 - Digital Electronics
- ECE 342 - Probability for Electrical and Computer Engineers
- ECE 410 - Advanced Digital Logic Design
- ENG 404 - Engineering Safety and Loss Management
- Group II Program Elective

Term 8

- ECE 420 - Parallel and Distributed Programming
- ECE 487 - Data Communication Networks
- ECE 492 - Computer Engineering Design Project
Computer: Nanoscale System Design Option

Year 2

<table>
<thead>
<tr>
<th>Term 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPUT 274 - Introduction to Tangible Computing I</td>
</tr>
<tr>
<td>ECE 201 - Introduction to Electrical and Computer Engineering</td>
</tr>
<tr>
<td>ECE 202 - Electrical Circuits I</td>
</tr>
<tr>
<td>ECE 210 - Introduction to Digital Logic Design</td>
</tr>
<tr>
<td>MATH 201 - Differential Equations</td>
</tr>
<tr>
<td>MATH 209 - Calculus III</td>
</tr>
<tr>
<td>English Elective</td>
</tr>
</tbody>
</table>

Winter Term 4

| CMPUT 272 - Formal Systems and Logic in Computing Science |
| CMPUT 275 - Introduction to Tangible Computing II |
| ECE 203 - Electrical Circuits II |
| ECE 212 - Introduction to Microprocessors |
| ECE 240 - Continuous Time Signals and Systems |
| PHYS 230 - Electricity and Magnetism |

Year 3

<table>
<thead>
<tr>
<th>Term 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 302 - Electronic Devices</td>
</tr>
<tr>
<td>ECE 311 - Computer Organization and Architecture</td>
</tr>
<tr>
<td>ECE 325 - Object-Oriented Software Design</td>
</tr>
<tr>
<td>ECE 342 - Probability for Electrical and Computer Engineers</td>
</tr>
<tr>
<td>Complementary Studies Elective (3-0-0)</td>
</tr>
<tr>
<td>Group I Program Elective</td>
</tr>
</tbody>
</table>

Winter

| WKEXP 902 - Engineering Work Experience II |

Year 4

<table>
<thead>
<tr>
<th>Term 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPUT 291 - Introduction to File and Database Management</td>
</tr>
<tr>
<td>ECE 315 - Computer Interfacing</td>
</tr>
<tr>
<td>ECE 412 - Fault-Tolerant Computing</td>
</tr>
<tr>
<td>ECE 450 - Nanoscale Phenomena in Electronic Devices</td>
</tr>
<tr>
<td>ITS Elective (3-0-0)</td>
</tr>
</tbody>
</table>

Fall Term 8

| CMPUT 301 - Introduction to Software Engineering |
| CMPUT 304 - Digital Electronics |
| ECE 410 - Advanced Digital Logic Design |
| Complementary Studies Elective (3-0-0) |
| Group II Program Elective |

Winter Term 7

| CMPUT 301 - Introduction to Software Engineering |
| CMPUT 379 - Operating System Concepts |
| ECE 304 - Digital Electronics |
| ECE 342 - Probability for Electrical and Computer Engineers |
| ECE 420 - Parallel and Distributed Programming |
| English Elective (3-0-0) |
| Group I Program Elective |
| ITS Elective |

Summer

| WKEXP 904 - Engineering Work Experience IV |

Required Courses and Suggested Course Sequence for Co-op Programs

Computer

Year 2

<table>
<thead>
<tr>
<th>Fall Term 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPUT 274 - Introduction to Tangible Computing I</td>
</tr>
<tr>
<td>ECE 201 - Introduction to Electrical and Computer Engineering</td>
</tr>
<tr>
<td>ECE 202 - Electrical Circuits I</td>
</tr>
<tr>
<td>ECE 210 - Introduction to Digital Logic Design</td>
</tr>
<tr>
<td>ENGG 299 - Orientation to Cooperative Education</td>
</tr>
<tr>
<td>MATH 201 - Differential Equations</td>
</tr>
<tr>
<td>MATH 209 - Calculus III</td>
</tr>
</tbody>
</table>

Winter Term 4

| CMPUT 272 - Formal Systems and Logic in Computing Science |
| CMPUT 275 - Introduction to Tangible Computing II |
| ECE 203 - Electrical Circuits II |
| ECE 212 - Introduction to Microprocessors |
| ECE 240 - Continuous Time Signals and Systems |
| PHYS 230 - Electricity and Magnetism |

Summer

| WKEXP 901 - Engineering Work Experience I |

Year 3

<table>
<thead>
<tr>
<th>Fall Term 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPUT 291 - Introduction to File and Database Management</td>
</tr>
<tr>
<td>ECE 302 - Electronic Devices</td>
</tr>
<tr>
<td>ECE 311 - Computer Organization and Architecture</td>
</tr>
<tr>
<td>ECE 325 - Object-Oriented Software Design</td>
</tr>
<tr>
<td>ECE 340 - Discrete Time Signals and Systems</td>
</tr>
<tr>
<td>Group I Program Elective</td>
</tr>
</tbody>
</table>

Winter

| WKEXP 902 - Engineering Work Experience II |

Year 4

<table>
<thead>
<tr>
<th>Fall Term 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPUT 379 - Operating System Concepts</td>
</tr>
<tr>
<td>ECE 304 - Digital Electronics</td>
</tr>
<tr>
<td>ECE 342 - Probability for Electrical and Computer Engineers</td>
</tr>
<tr>
<td>ECE 410 - Advanced Digital Logic Design</td>
</tr>
<tr>
<td>Complementary Studies Elective (3-0-0)</td>
</tr>
<tr>
<td>Group II Program Elective</td>
</tr>
</tbody>
</table>

Winter Term 7

| CMPUT 301 - Introduction to Software Engineering |
| CMPUT 379 - Operating System Concepts |
| ECE 304 - Digital Electronics |
| ECE 342 - Probability for Electrical and Computer Engineers |
| ECE 420 - Parallel and Distributed Programming |
| English Elective (3-0-0) |
| Group I Program Elective |
| ITS Elective |

Summer

| WKEXP 904 - Engineering Work Experience IV |

Note: See Computer Engineering: Nanoscale System Design Option for restrictions on the program electives.
Note: See Program and Technical Electives for restrictions on the six program electives.

Computer: Nanoscale System Design Option

Year 2

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CMPUT 274 - Introduction to Tangible Computing I</td>
</tr>
<tr>
<td></td>
<td>ECE 201 - Introduction to Electrical and Computer Engineering</td>
</tr>
<tr>
<td></td>
<td>ECE 202 - Electrical Circuits I</td>
</tr>
<tr>
<td></td>
<td>ECE 210 - Introduction to Digital Logic Design</td>
</tr>
<tr>
<td></td>
<td>ENGG 299 - Orientation to Cooperative Education</td>
</tr>
<tr>
<td></td>
<td>MATH 201 - Differential Equations</td>
</tr>
<tr>
<td></td>
<td>MATH 209 - Calculus III</td>
</tr>
<tr>
<td>Winter</td>
<td>CMPUT 272 - Formal Systems and Logic in Computing Science</td>
</tr>
<tr>
<td></td>
<td>CMPUT 275 - Introduction to Tangible Computing II</td>
</tr>
<tr>
<td></td>
<td>ECE 203 - Electrical Circuits II</td>
</tr>
<tr>
<td></td>
<td>ECE 212 - Introduction to Microprocessors</td>
</tr>
<tr>
<td></td>
<td>ECE 240 - Continuous Time Signals and Systems</td>
</tr>
<tr>
<td></td>
<td>PHYS 230 - Electricity and Magnetism</td>
</tr>
<tr>
<td>Summer</td>
<td>WKEXP 901 - Engineering Work Experience I</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ECE 302 - Electronic Devices</td>
</tr>
<tr>
<td></td>
<td>ECE 311 - Computer Organization and Architecture</td>
</tr>
<tr>
<td></td>
<td>ECE 325 - Object-Oriented Software Design</td>
</tr>
<tr>
<td></td>
<td>Complementary Studies Elective (3-0-0)</td>
</tr>
<tr>
<td></td>
<td>English Elective (3-0-0)</td>
</tr>
<tr>
<td></td>
<td>Group I Program Elective</td>
</tr>
<tr>
<td>Winter</td>
<td>WKEXP 902 - Engineering Work Experience II</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
</tr>
<tr>
<td></td>
<td>WKEXP 903 - Engineering Work Experience III</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CMPUT 291 - Introduction to File and Database Management</td>
</tr>
<tr>
<td></td>
<td>ECE 304 - Digital Electronics</td>
</tr>
<tr>
<td></td>
<td>ECE 342 - Probability for Electrical and Computer Engineers</td>
</tr>
<tr>
<td></td>
<td>ECE 410 - Advanced Digital Logic Design</td>
</tr>
<tr>
<td></td>
<td>ENGG 404 - Engineering Safety and Loss Management</td>
</tr>
<tr>
<td></td>
<td>ITS Elective (3-0-0)</td>
</tr>
<tr>
<td>Winter</td>
<td>CMPUT 301 - Introduction to Software Engineering</td>
</tr>
<tr>
<td></td>
<td>ECE 315 - Computer Interfacing</td>
</tr>
<tr>
<td></td>
<td>ECE 403 - Integrated Circuit Design</td>
</tr>
<tr>
<td></td>
<td>ECE 450 - Nanoscale Phenomena in Electronic Devices</td>
</tr>
<tr>
<td></td>
<td>ECE 475 - Optoelectronic and Photovoltaic Devices</td>
</tr>
<tr>
<td></td>
<td>ENG M 310 - Engineering Economy OR</td>
</tr>
<tr>
<td></td>
<td>ENG M 401 - Financial Management for Engineers</td>
</tr>
<tr>
<td>Summer</td>
<td>WKEXP 904 - Engineering Work Experience IV</td>
</tr>
</tbody>
</table>

Year 5

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>WKEXP 905 - Engineering Work Experience V</td>
</tr>
<tr>
<td>Winter</td>
<td>ECE 412 - Fault-Tolerant Computing</td>
</tr>
<tr>
<td></td>
<td>ECE 457 - Microfabrication and Devices</td>
</tr>
<tr>
<td></td>
<td>ECE 492 - Computer Engineering Design Project</td>
</tr>
<tr>
<td></td>
<td>ENGG 400 - The Practice of the Engineering Profession</td>
</tr>
<tr>
<td></td>
<td>Group I Program Elective</td>
</tr>
<tr>
<td></td>
<td>Group II Program Elective</td>
</tr>
</tbody>
</table>

Computer: Software Option

Year 2

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CMPUT 274 - Introduction to Tangible Computing I</td>
</tr>
<tr>
<td></td>
<td>ECE 201 - Introduction to Electrical and Computer Engineering</td>
</tr>
<tr>
<td></td>
<td>ECE 202 - Electrical Circuits I</td>
</tr>
<tr>
<td></td>
<td>ECE 210 - Introduction to Digital Logic Design</td>
</tr>
<tr>
<td></td>
<td>ENGG 299 - Orientation to Cooperative Education</td>
</tr>
<tr>
<td></td>
<td>MATH 201 - Differential Equations</td>
</tr>
<tr>
<td></td>
<td>MATH 209 - Calculus III</td>
</tr>
<tr>
<td>Winter</td>
<td>CMPUT 272 - Formal Systems and Logic in Computing Science</td>
</tr>
<tr>
<td></td>
<td>CMPUT 275 - Introduction to Tangible Computing II</td>
</tr>
<tr>
<td></td>
<td>ECE 212 - Introduction to Microprocessors</td>
</tr>
<tr>
<td></td>
<td>ECE 240 - Continuous Time Signals and Systems</td>
</tr>
<tr>
<td></td>
<td>PHYS 230 - Electricity and Magnetism</td>
</tr>
<tr>
<td></td>
<td>English Elective (3-0-0)</td>
</tr>
<tr>
<td>Summer</td>
<td>WKEXP 901 - Engineering Work Experience I</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ECE 311 - Computer Organization and Architecture</td>
</tr>
<tr>
<td></td>
<td>ECE 321 - Software Requirements Engineering</td>
</tr>
<tr>
<td></td>
<td>ECE 325 - Object-Oriented Software Design</td>
</tr>
<tr>
<td></td>
<td>STAT 235 - Introductory Statistics for Engineering</td>
</tr>
<tr>
<td></td>
<td>Group I Program Elective</td>
</tr>
<tr>
<td></td>
<td>Complementary Studies Elective (3-0-0)</td>
</tr>
<tr>
<td>Winter</td>
<td>WKEXP 902 - Engineering Work Experience II</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
</tr>
<tr>
<td></td>
<td>WKEXP 903 - Engineering Work Experience III</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CMPUT 291 - Introduction to File and Database Management</td>
</tr>
<tr>
<td></td>
<td>CMPUT 301 - Introduction to Software Engineering</td>
</tr>
<tr>
<td></td>
<td>CMPUT 379 - Operating System Concepts</td>
</tr>
<tr>
<td></td>
<td>ECE 322 - Software Testing and Maintenance Engineering</td>
</tr>
<tr>
<td></td>
<td>Group I Program Elective</td>
</tr>
<tr>
<td></td>
<td>ITS Elective (3-0-0)</td>
</tr>
<tr>
<td>Winter</td>
<td>ECE 315 - Computer Interfacing</td>
</tr>
<tr>
<td></td>
<td>ECE 421 - Exploring Software Development Domains</td>
</tr>
<tr>
<td></td>
<td>ECE 422 - Reliable and Secure Systems Design</td>
</tr>
<tr>
<td></td>
<td>ENGG 404 - Engineering Safety and Loss Management</td>
</tr>
<tr>
<td></td>
<td>Group II Program Elective</td>
</tr>
<tr>
<td></td>
<td>Group II Program Elective</td>
</tr>
<tr>
<td>Summer</td>
<td>WKEXP 904 - Engineering Work Experience IV</td>
</tr>
</tbody>
</table>

Year 5

<table>
<thead>
<tr>
<th>Term</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>WKEXP 905 - Engineering Work Experience V</td>
</tr>
<tr>
<td>Winter</td>
<td>ECE 420 - Parallel and Distributed Programming</td>
</tr>
<tr>
<td></td>
<td>ECE 487 - Data Communication Networks</td>
</tr>
<tr>
<td></td>
<td>ECE 493 - Software Systems Design Project</td>
</tr>
<tr>
<td></td>
<td>ENG M 310 - Engineering Economy OR</td>
</tr>
<tr>
<td></td>
<td>ENG M 401 - Financial Management for Engineers</td>
</tr>
</tbody>
</table>
Note Other courses, including 500-level graduate ECE courses, may be taken with Departmental approval.

Computer Engineering: Software Option

Group I (Interdisciplinary) Electives

Two from CH E 243, MAT E 201 and MEC E 250 must be selected.

Group II Electives

The four program electives in this group must be selected from the following list:

- CMPUT 250 - Computers and Games
- CMPUT 304 - Algorithms II
- CMPUT 307 - 3D Graphics and Animation with 3DS Max
- CMPUT 325 - Non-Procedural Programming Languages
- CMPUT 350 - Advanced Games Programming
- CMPUT 366 - Intelligent Systems
- CMPUT 391 - Database Management Systems
- CMPUT 411 - Introduction to Computer Graphics
- CMPUT 415 - Compiler Design
- CMPUT 486 - Machine Learning
- ECE 303 - Analog Electronics
- ECE 321 - Software Requirements Engineering
- ECE 322 - Software Testing and Maintenance Engineering
- ECE 326 - Fundamentals of Control Systems Engineering
- ECE 340 - Discrete Time Signals and Systems
- ECE 362 - Fundamentals of Control Systems Engineering
- ECE 365 - Engineering of Nanobiotechnological Systems
- ECE 370 - Engineering Electromagnetics I
- ECE 375 - Optoelectronic and Photovoltaic Devices
- ECE 380 - Introduction to Communication Systems
- ECE 386 - Intelligent Systems
- ECE 402 - RF Communication Circuits
- ECE 403 - Integrated Circuit Design
- ECE 405 - Biophysical Measurement and Instrumentation
- ECE 412 - Fault-Tolerant Computing
- ECE 413 - Computer Aided Design of Nanoscale Systems
- ECE 421 - Exploring Software Development Domains
- ECE 422 - Reliable and Secure Systems Design
- ECE 440 - Digital Computer Processing of Images
- ECE 442 - Introduction to Multimedia Signal Processing
- ECE 449 - Intelligent Systems Engineering
- ECE 450 - Nanoscale Phenomena in Electronic Devices
- ECE 455 - Engineering of Nanobiotechnological Systems
- ECE 456 - Introduction to Nanoelectronics
- ECE 458 - Engineering of Nanobiotechnological Systems
- ENGG 400 - The Practice of the Engineering Profession
- Group II Program Elective
- Group II Program Elective

Computer Engineering: Nanoscale System Design Option

Group I (Interdisciplinary) Electives

Two from CH E 243, MAT E 201 and MEC E 250 must be selected.

Group II Electives

The two program electives in this group must be selected from the following list:

- CMPUT 313 - Computer Networks
- CMPUT 379 - Operating System Concepts
- ECE 340 - Discrete Time Signals and Systems
- ECE 370 - Engineering Electromagnetics I
- ECE 380 - Introduction to Communication Systems
- ECE 422 - Reliable and Secure Systems Design
- ECE 449 - Intelligent Systems Engineering
- ECE 452 - Computation for Nanoengineering
- ECE 455 - Engineering of Nanobiotechnological Systems
- ECE 456 - Introduction to Nanoelectronics
- ECE 476 - Optoelectronic and Photovoltaic Devices
- One of
 - ECE 406 - Special Topics in Computer Engineering
 - ECE 407 - Special Topics in Computer Engineering

Note Other courses, including 500-level graduate ECE courses, may be taken with Departmental approval.

Complementary Studies Electives

To better understand the role of Engineering within a broader social context, all programs require an element of complementary studies consisting of the humanities, social sciences, arts, management, engineering economics and communications. Aspects of these topics are covered in mandatory courses, but each program contains complementary studies electives so that students may explore areas of particular interest. Notwithstanding this, the Canadian Engineering Accreditation Board requires that programs include exposure to the central thought processes of the humanities and social sciences. One Complementary Studies Elective must be taken from List 1, normally in the First Year of the program. Further Complementary Studies Electives must be at the 200-level or above and should be selected from List 2 (see Course Listings for course descriptions and prerequisites). Note that in some cases, a course may appear both on a complementary studies list and as a program required or program elective course. A single course cannot be used to satisfy multiple course requirements under Programs of Study.

List 1 (First year)

- ANTHR 101 - Introductory Anthropology
- ANTHR 110 - Gender, Age, and Culture
- ANTHR 150 - Race and Racism
- CLASS 102 - Greek and Roman Mythology
- CLASS 103 - Introduction to Ancient Greece
- CLASS 104 - Introduction to Ancient Rome
- CLASS 110 - The Ancient World
- ECON 104 - Microeconomics
- ECON 108 - Macroeconomics
- ENGL 122 *
- ENGL 123 *
- ENGL 124 *
- ENGL 125 - Aboriginal Writing *
Electrical Engineering

Electrical engineering is the application of knowledge of electrical systems and phenomena for the benefit of society. The Electrical Engineering program builds an understanding of theoretical concepts early in the program and then gives students the tools to develop more in-depth knowledge in their fields of interest. Introductory courses explore the fundamentals of electricity and magnetism, the laws governing analog electric circuits, and introduce digital circuitry. In the third and fourth years of study, students are able to investigate specific areas of electrical engineering, while maintaining a broad outlook.

Practical experience is integral to the program. Laboratory experiments form a required element of many courses while in the final year of study students must complete a capstone design project.

Areas of Study

Students are required to choose electives as part of the program. These courses allow students to study the following technical areas in greater depth. Students should contact the Department of Electrical and Computer Engineering for advice regarding the selection of appropriate elective courses in their areas of interest.

Biomedical Engineering

Biomedical Engineering is the application of the principles of engineering to the solution of problems in medicine and biology. Applications of electrical engineering include bioelectromagnetism, physiological monitoring and related instrumentation, medical imaging and information systems. See Biomedical Option in Electrical Engineering and Biomedical Engineering for more information.

Communications Engineering

Communications engineering involves the movement of information from one point to another in analog or digital form, including transmitting, routing, receiving and processing these signals.

Control Systems Engineering
Control Systems Engineering is an interdisciplinary subject that cuts across many specialized engineering fields. Control system engineers are essential to the design of systems such as robotics, space vehicles, oil refineries, papermaking machines, power systems and automobiles.

Digital Systems Engineering
Digital systems engineers design hardware systems for a broad range of applications including process control, robotics, digital signal processing, computers, communications, instrumentation and data acquisition.

Electronic Materials and Nanotechnology
Electronic materials are central to many applications including electronic and photonic devices and biotechnology. Topics include growth of thin films and microfabrication of functional devices. Of increasing importance is nanotechnology, the science and engineering of materials and structures at the molecular level.

Electronics Engineering
Electronics is an area of electrical engineering that may be applied to all fields of technology. It overlaps other areas of electrical engineering such as digital, control, communications and power systems.

Electromagnetics and Photonics
Electromagnetic phenomena form the basis of electrical engineering. Further study of electromagnetics can aid understanding of systems such as photonics, microwaves, plasma processing, power distribution, lasers and wireless transmission.

Power Engineering
Power Engineering covers the generation, transmission, distribution and application of electrical power. It includes power systems, power electronics, motors generators and motor drives.

Biomedical Option in Electrical Engineering
This option is intended to provide a more intensive specialization in the biomedical engineering field than is possible by choosing only the relevant program electives. Core courses in the Electrical Engineering Program are replaced by fundamental courses in medicine and biology. This option is intended to better prepare students for graduate studies in biomedical engineering and for employment in the health-care industry. It also provides the necessary academic qualifications to allow successful students to make application into the MD Program. See Areas of Study, Biomedical Engineering and Doctor of Medicine (MD) for more information.

Nanoengineering Option in Electrical Engineering
This option provides an introduction to the principles of electronics, electromagnetics and photonics as they apply at the nanoscale level. By selecting this option, students will learn about the processes involved in the fabrication of nanoscale structures and become familiar with the computer aided design (CAD) tools necessary for analyzing phenomena at these very high levels of miniaturization.

The Option retains most of the core elements of the traditional Electrical Engineering Program and contains a number of offerings in the form of program electives. Changes from the Traditional Electrical Engineering Program occur only after second year.

Required Courses and Suggested Course Sequence for Traditional Programs

Electrical Engineering

Year 2

Term 3
- ECE 201 - Introduction to Electrical and Computer Engineering
- ECE 202 - Electrical Circuits I
- ECE 210 - Introduction to Digital Logic Design
- MATH 201 - Differential Equations
- MATH 209 - Calculus III
- Group I Program Elective
- English Elective (3-0-0)

Term 4
- ECE 203 - Electrical Circuits II
- ECE 212 - Introduction to Microprocessors
- ECE 220 - Programming for Electrical Engineering
- ECE 240 - Continuous Time Signals and Systems
- PHYS 230 - Electricity and Magnetism

Year 3

Term 5
- ECE 302 - Electronic Devices
- ECE 340 - Discrete Time Signals and Systems
- ECE 342 - Probability for Electrical and Computer Engineers
- ECE 360 - Control Systems I
- ECE 370 - Engineering Electromagnetics I
- MATH 300 - Mathematical Methods for Electrical Engineers

Year 4

Term 7
- ECE 332 - Electric Machines
- ECE 490 - Electrical Engineering Design Project I
- ENGG 404 - Engineering Safety and Loss Management
- Group I Program Elective
- Group II Program Elective
- Group II Program Elective

Year "a"

Term 8
- ECE 491 - Electrical Engineering Design Project II
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- ENGG 400 - The Practice of the Engineering Profession
- Group II Program Elective
- Group II Program Elective
- Group II Program Elective
- ITS Elective (3-0-0)

Note: See Program and Technical Electives for restrictions on the nine program electives.

Electrical: Biomedical Engineering Option

Year 2

Term 3
- ECE 201 - Introduction to Electrical and Computer Engineering
- ECE 202 - Electrical Circuits I
- ECE 210 - Introduction to Digital Logic Design
- MATH 201 - Differential Equations
- MATH 209 - Calculus III
- Group I Program Elective
- English Elective (3-0-0)

Term 4
- ECE 203 - Electrical Circuits II
- ECE 212 - Introduction to Microprocessors
- ECE 220 - Programming for Electrical Engineering
- ECE 240 - Continuous Time Signals and Systems
- PHYS 230 - Electricity and Magnetism
- Complementary Studies Elective (3-0-0)

Year 3

Term 5
- BIOL 107 - Introduction to Cell Biology
- ECE 302 - Electronic Devices
- ECE 312 - Embedded System Design
- ECE 340 - Discrete Time Signals and Systems
- ECE 370 - Engineering Electromagnetics I
- MATH 300 - Mathematical Methods for Electrical Engineers
Engineering

Year 4

Term 7
- ECE 405 - Biophysical Measurement and Instrumentation
- ECE 440 - Digital Computer Processing of Images
- ECE 490 - Electrical Engineering Design Project I
- Group II Program Elective
- PHYSL 210 - Human Physiology A
- ITS Elective (3-0-0)

Term 8
- ECE 491 - Electrical Engineering Design Project II
- Group II Program Elective
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- ENGG 400 - The Practice of the Engineering Profession
- PHYSL 210 - Human Physiology B

Note: See Program and Technical Electives for restrictions on the program electives and information for students interested in applying for admission into the Faculty of Medicine and Dentistry MD program

Electrical: Nanoengineering Option

Year 2

Term 3
- ECE 201 - Introduction to Electrical and Computer Engineering
- ECE 202 - Electrical Circuits I
- ECE 210 - Introduction to Digital Logic Design
- MATH 201 - Differential Equations
- MATH 209 - Calculus III
- Group I Program Elective
- English Elective (3-0-0)

Term 4
- ECE 203 - Electrical Circuits II
- ECE 212 - Introduction to Microprocessors
- ECE 220 - Programming for Electrical Engineering
- ECE 240 - Continuous Time Signals and Systems
- PHYS 230 - Electricity and Magnetism
- Complementary Studies Elective (3-0-0)

Year 3

Term 5
- ECE 302 - Electronic Devices
- ECE 340 - Discrete Time Signals and Systems
- ECE 342 - Probability for Electrical and Computer Engineers
- ECE 360 - Control Systems I
- ECE 370 - Engineering Electromagnetics I
- MATH 309 - Mathematical Methods for Electrical Engineers

Term 6
- ECE 303 - Analog Electronics
- ECE 312 - Embedded System Design
- ECE 341 - Analytical Methods in Electrical Engineering
- ECE 456 - Introduction to Nanoelectronics
- ITS Elective (3-0-0)

Year 4

Term 7
- ECE 457 - Microfabrication and Devices
- ECE 471 - Photonics I
- ECE 490 - Electrical Engineering Design Project I
- ENGG 404 - Engineering Safety and Loss Management

- Group I Program Elective
- Group II Program Elective

Term 8
- ECE 450 - Nanoscale Phenomena in Electronic Devices
- ECE 475 - Optoelectronic and Photovoltaic Devices
- ECE 491 - Electrical Engineering Design Project II
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- ENGG 400 - The Practice of the Engineering Profession
- Group II Program Elective
- Group II Program Elective

Note: See Program and Technical Electives for restrictions on the program electives

Required Courses and Suggested Course Sequence for Co-op Programs

Electrical
Year 5

Fall Term 7
- ECE 332 - Electric Machines
- ECE 490 - Electrical Engineering Design Project I
- ENGG 404 - Engineering Safety and Loss Management
- Group II Program Elective
- Group II Program Elective
- ITS Elective (3-0-0)

Winter Term 8
- ECE 401 - Electrical Engineering Design Project II
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- ENGG 480 - The Practice of the Engineering Profession
- Group II Program Elective

Note: See Program and Technical Electives for restrictions on the program electives.

Electrical: Nanoengineering Option

Year 2

Fall Term 3
- ECE 201 - Introduction to Electrical and Computer Engineering
- ECE 202 - Electrical Circuits I
- ECE 210 - Introduction to Digital Logic Design
- ENGG 299 - Orientation to Cooperative Education
- MATH 201 - Differential Equations
- MATH 209 - Calculus III
- Group I Program Elective

Winter Term 4
- ECE 203 - Electrical Circuits II
- ECE 212 - Introduction to Microprocessors
- ECE 220 - Programming for Electrical Engineering
- ECE 240 - Continuous Time Signals and Systems
- PHYS 230 - Electricity and Magnetism
- English Elective (3-0-0)

Summer
- WKEXP 901 - Engineering Work Experience I

Year 3

Fall
- WKEXP 902 - Engineering Work Experience II

Winter Term 5
- ECE 302 - Electronic Devices
- ECE 312 - Embedded System Design
- ECE 340 - Discrete Time Signals and Systems
- ECE 380 - Control Systems I
- ECE 370 - Engineering Electromagnetics I
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers

Summer Term 6
- ECE 303 - Analog Electronics
- ECE 342 - Probability for Electrical and Computer Engineers
- MATH 309 - Mathematical Methods for Electrical Engineers
- ITS Elective (3-0-0)
- Group I Program Elective
- Complementary Studies Elective (3-0-0)

Year 4

Fall
- WKEXP 903 - Engineering Work Experience III

Winter
- WKEXP 904 - Engineering Work Experience IV

Summer
- WKEXP 905 - Engineering Work Experience V

Year 5

Fall Term 7
- ECE 457 - Microfabrication and Devices
- ECE 471 - Photonics I
- ECE 490 - Electrical Engineering Design Project I
- ENGG 404 - Engineering Safety and Loss Management
- Group II Program Elective

Group II Program Elective
- Winter Term 8
- ECE 341 - Analytical Methods in Electrical Engineering
- ECE 450 - Nanoscale Phenomena in Electronic Devices
- ECE 486 - Introduction to Nanoelectronics
- ECE 475 - Optoelectronic and Photovoltaic Devices
- ECE 491 - Electrical Engineering Design Project II
- Group II Program Elective

Note: See Program and Technical Electives for restrictions on the program electives.

Program and Technical Electives - Electrical

Group I (Interdisciplinary) Electives

Two must be selected from
- CH E 243 - Engineering Thermodynamics
- MAT E 201 - Materials Science I
- MEC E 250 - Engineering Mechanics II
- Group II Electives

Of the six single-term program electives in this group, at least three must be from
- ECE 304 - Digital Electronics
- ECE 401 - Power Electronics
- ECE 402 - RF Communication Circuits
- ECE 403 - Integrated Circuit Design
- ECE 410 - Advanced Digital Logic Design
- ECE 432 - Variable Speed Drives
- ECE 433 - Power System Stability and Transients
- ECE 440 - Digital Computer Processing of Images
- ECE 442 - Introduction to Multimedia Signal Processing
- ECE 449 - Intelligent Systems Engineering
- ECE 450 - Nanoscale Phenomena in Electronic Devices
- ECE 457 - Microfabrication and Devices
- ECE 460 - Control Systems II
- ECE 464 - Medical Robotics and Computer-Integrated Intervention
- ECE 471 - Photonics I
- ECE 476 - Engineering Electromagnetics II
- ECE 478 - Microwave Circuits
- ECE 485 - Digital Communications

and at most two program electives may be chosen from the following list of courses:
- BME 513 - Imaging Methods in Medicine
- ECE 405 - Biophysical Measurement and Instrumentation
- ECE 408 - Special Topics in Electrical Engineering OR
- ECE 409 - Special Topics in Electrical Engineering
- ECE 412 - Fault-Tolerant Computing
- ECE 413 - Computer Aided Design of Nanoscale Systems
- ECE 452 - Computation for Nanoelectronics
- ECE 487 - Data Communication Networks

Any remaining program electives may be chosen from the following list of courses:
- ECE 341 - Analytical Methods in Electrical Engineering
- ECE 430 - Power System Analysis
- ECE 434 - Power System Protection
- ECE 456 - Introduction to Nanoelectronics
- ECE 458 - Introduction to Microelectromechanical Systems
- ECE 472 - Photonics II
- ECE 474 - Introduction to Plasma Engineering
- ECE 475 - Optoelectronic and Photovoltaic Devices
• ECE 486 - Wireless Communications
• ECE 489 - Telecommunication System Engineering

Notes
Other courses, including 500-level graduate ECE courses, may be taken with Departmental approval.

Total lab hours per week in the Group II Electives must be a minimum of 4.5 hours. The Lab hours in a graduate course may not count towards the minimum 4.5 hours/week.

Recommendations regarding selection of program electives in various areas of study in electrical engineering are available from the Department.

Electrical: Biomedical Option

Group I (Interdisciplinary) Electives

Two must be selected from

• CH E 243 - Engineering Thermodynamics
• MAT E 201 - Materials Science I
• MEC E 250 - Engineering Mechanics II

Group II Electives

Of the three program electives in this group, at least two must be from

• ECE 304 - Digital Electronics
• ECE 401 - Power Electronics
• ECE 442 - Introduction to Multimedia Signal Processing
• ECE 450 - Nanoscale Phenomena in Electronic Devices
• ECE 457 - Microfabrication and Devices
• ECE 460 - Control Systems II
• ECE 471 - Photonics I
• ECE 476 - Engineering Electromagnetics II
• ECE 478 - Microwave Circuits

Any remaining program electives may be chosen from the following list of courses:

• BIOCH 200 - Introductory Biochemistry
• BME 513 - Imaging Methods in Medicine
• BME 564 - Fundamentals of Magnetic Resonance Imaging, MRI
• CHEM 261 - Organic Chemistry I
• CHEM 263 - Organic Chemistry II
• ECE 330 - Introduction to Power Engineering
• ECE 332 - Electric Machines
• ECE 430 - Power System Analysis
• ECE 445
• ECE 452 - Computation for Nanoengineering
• ECE 456 - Introduction to Nanoelectronics
• ECE 458 - Introduction to Microelectromechanical Systems
• ECE 464 - Medical Robotics and Computer-Integrated Intervention
• ECE 475 - Optoelectronic and Photovoltaic Devices
• ECE 478 - Microwave Circuits

Note: Admission requirements for the Doctor of Medicine (MD) degree program include a specific number of course units in various core subjects. This information can be found in Academic Requirements. Students in the Biomedical Option who plan to apply to the MD degree program must select their electives carefully to obtain the necessary credit for required subjects. It may also be necessary to take courses over and above those included in the Biomedical Option to meet the course unit requirements in all of the core subjects required for Medicine. Students in the Biomedical Option who plan to apply for admission to the MD degree program should contact their program advisor in the Fall term of second year for guidance on the selection of appropriate electives and any specific courses which would be in addition to those required for the engineering degree.

Electrical: Nanoengineering Option

Group I (Interdisciplinary) Electives

Two must be selected from

• CH E 243 - Engineering Thermodynamics
• MAT E 201 - Materials Science I
• MEC E 250 - Engineering Mechanics II
• Group II Electives

The three single-term program electives in this group must be selected from the following list:

• BME 513 - Imaging Methods in Medicine

• BME 564 - Fundamentals of Magnetic Resonance Imaging, MRI
• ECE 304 - Digital Electronics
• ECE 330 - Introduction to Power Engineering
• ECE 332 - Electric Machines
• ECE 380 - Introduction to Communication Systems
• ECE 401 - Power Electronics
• ECE 402 - RF Communication Circuits
• ECE 403 - Integrated Circuit Design
• ECE 405 - Biophysical Measurement and Instrumentation
• ECE 408 - Special Topics in Electrical Engineering OR ECE 409 - Special Topics in Electrical Engineering
• ECE 410 - Advanced Digital Logic Design
• ECE 430 - Power System Analysis
• ECE 440 - Digital Computer Processing of Images
• ECE 449 - Intelligent Systems Engineering
• ECE 452 - Computation for Nanoengineering
• ECE 455 - Engineering of Nanobiotechnological Systems
• ECE 458 - Introduction to Microelectromechanical Systems
• ECE 460 - Control Systems II
• ECE 464 - Medical Robotics and Computer-Integrated Intervention
• ECE 472 - Photonics II
• ECE 474 - Introduction to Plasma Engineering
• ECE 476 - Engineering Electromagnetics II
• ECE 478 - Microwave Circuits

Notes
Other courses, including 500-level graduate ECE courses, may be taken in lieu of those on the latter list with Departmental approval.

Total lab hours per week in the Group II Electives must be a minimum of 3.0 hours. The Lab hours in a graduate course may not count towards the minimum 3 hours/week.

Complementary Studies Electives

To better understand the role of Engineering within a broader social context, all programs require an element of complementary studies consisting of the humanities, social sciences, arts, management, engineering economics and communications. Aspects of these topics are covered in mandatory courses, but each program contains complementary studies electives so that students may explore areas of particular interest. Notwithstanding this, the Canadian Engineering Accreditation Board requires that programs include exposure to the central thought processes of the humanities and social sciences. One Complementary Studies Elective must be taken from List 1, normally in the First Year of the program. Further Complementary Studies Electives must be at the 200-level or above and should be selected from List 2 (see Course Listings for course descriptions and prerequisites). Note that in some cases, a course may appear both on a complementary studies list and as a program required or program elective course. A single course cannot be used to satisfy multiple course requirements under Programs of Study.

List 1 (First year)

• ANTHR 101 - Introductory Anthropology
• ANTHR 110 - Gender, Age, and Culture
• ANTHR 150 - Race and Racism
• CLASS 102 - Greek and Roman Mythology
• CLASS 103 - Introduction to Ancient Greece
• CLASS 104 - Introduction to Ancient Rome
• CLASS 110 - The Ancient World
• ECON 101 - Introduction to Microeconomics
• ECON 102 - Introduction to Macroeconomics
• ECON 204 - Principles of Economics
• ENGL 121 *
• ENGL 122 *
• ENGL 123 *
• ENGL 124 *
• ENGL 125 - Aboriginal Writing *
• HIST 110 - The Pre-Modern World
• HIST 111 - The Early Modern World
• HIST 112 - The Modern World
• HIST 114 - The History of the World in the Last 10 Years
• HIST 115 - Technology and History
• HIST 116 - The Emergence of the Atlantic World
• LING 100
• LING 101 - Introduction to Linguistic Analysis
• PHL 120 - Symbolic Logic I
• PHL 125 - Practical Logic
• POL S 101 - Introduction to Politics
• PSYCO 104 - Basic Psychological Processes
• SOC 100 - Introductory Sociology

Note: *A single ENGL course cannot satisfy both a Complementary Studies requirement and an English Elective.

**Not available to Civil (Environmental Engineering Option) students.

Notes:

List 2 (Second and higher years)

• ACCTG 300 - Introduction to Accounting
• ACCTG 311 - Introduction to Accounting for Financial Performance
• ANTHR 230 - Anthropology of Science, Technology, and Environment
• AREC 365 - Natural Resource Economics
• B LAW 301 - Legal Foundations of the Canadian Economy **
• B LAW 422 - Law of Business Organizations
• B LAW 428 - Natural Resource and Environmental Law ***
• B LAW 432 - The Legal Regulation of Business
• CHRTC 350 - Science and Religion: Christian Perspectives
• CLASS 254 - Introduction to Greek Art and Archaeology
• CLASS 255 - Introduction to Roman Art and Archaeology
• CLASS 283 - Introductory Roman History II
• CLASS 294 - Ancient Science, Technology, and Medicine
• CLASS 376 - Early Civilization I
• ECON 204 - Principles of Economics
• ECON 281 - Intermediate Microeconomic Theory I
• ECON 282 - Intermediate Macroeconomic Theory I
• ECON 355
• ENGG 420 - Engineering Law
• ENG M 402 - Project Management and Entrepreneurship
• ENG M 406 - Adapting Technology to Meet Societal Needs
• HECOL 211 - Human Sexuality
• HIST 260 - Pre-Confederation Canada
• HIST 261 - Post-Confederation Canada
• HIST 295 - 20th-Century Warfare
• HIST 396
• HIST 397 - History of Science I
• HIST 398 - History of Science II
• INT D 257
• INT D 303 - Economics of World Food and Agriculture
• LA ST 210 - South America
• LING 204 - English Syntax
• LING 205 - Phonetics
• MARK 301 - Introduction to Marketing
• OM 352 - Operations Management
• PHL 205 - Philosophy of Mind
• PHL 220 - Symbolic Logic II
• PHL 250 - Contemporary Ethical Issues
• PHL 265 - Philosophy of Science
• PHL 325 - Risk, Choice, and Rationality
• PHL 366 - Computers and Culture
• PHL 375 - Science and Society
• PHL 380 - Philosophy of Criticism
• POL S 220
• POL S 221
• POL S 223 - City Government and Politics
• POL S 266
• PSYCO 258 - Cognitive Psychology
• PSYCO 275 - Brain and Behavior
• R SOC 355 - Rural Communities and Global Economies
• R SOC 385 - Sociology of Environment and Development
• SMO 200 - Introduction to Management for Non-Business Students
• SMO 301 - Behavior in Organizations
• SOC 212 - Classical Social Theory
• SOC 224 - Sociology of Deviance and Conformity
• SOC 225 - Criminology
• SOC 241 - Social Psychology
• SOC 242
• SOC 251 - Population and Society
• SOC 301 - Sociology of Gender
• WGS 201

Notes:

**Not available to Civil students

***Not available to Civil (Environmental Engineering Option) students.

A second course from the ITS List may be taken as part of List 2. However, a single course cannot be used to satisfy both the ITS and Complementary Studies requirements. This list is updated annually. Courses that teach a language or the application of a particular skill (such as courses in physical education, music and art) do not meet the intent of the Accreditation Board with respect to complementary studies and are therefore not eligible.

Impact of Technology on Society (ITS) Elective

A specific requirement of the Canadian Engineering Accreditation Board is study of the impact of technology on society. To meet this requirement, students must take one of the following:

• ENG M 403
• ENG M 405 - Engineering, Business and Society
• HIST 115 - Technology and History
• HIST 391 - History of Technology
• HIST 393 - History of Science
• HGP 250 - Natural Resources and Environmental Management
• INT D 361 - Fundamentals of Energy, Environment and Sustainability
• PHIL 265 - Philosophy of Science
• PHIL 366 - Computers and Culture
• PHIL 375 - Science and Society
• STS 200 - Introduction to Studies in Science, Technology and Society
• SOC 366 - People in Industry
• SOC 368 - Sociology of Work and Industry

English Electives

Most engineering programs require a single-term (3-0-0) English course. This is typically ENGL 199, but ENGL 121, ENGL 122, ENGL 123, ENGL 124 and ENGL 125 are also acceptable.

Engineering Physics

The Engineering Physics program, offered in cooperation with the Department of Physics, leads to the degree of BSc in Engineering Physics. It is more fundamental than the Electrical Engineering program and provides students with an extensive background in mathematics and physics. Within the program is the Nanoengineering Option which focuses on aspects of the emerging field of nanotechnology and provides a more interdisciplinary perspective appropriate to that field.

Students who want to take Engineering Physics must have a high standing in mathematics and physics and normally are required to have a minimum GPA of 3.0 in the first year. Exceptions to this rule may be made by the Chair of the Department of Electrical and Computer Engineering.

In this program, the core material consists of courses in the basic sciences and electrical engineering. This provides a basis for more intensive studies in a number of specialized areas in Electrical Engineering. These areas are covered by elective courses chosen to meet the student’s requirements. Some of these areas are lasers, plasmas, communications, microelectronics, microwave, and high vacuum.

Nanoengineering Option

The emerging field of nanotechnology crosses many disciplines, including engineering, biology, chemistry, and physics. Structures and devices engineered on the scale of less than 100nm will have significant impact on how we create materials, process information, sense the environment, use energy, manufacture goods and practice medicine. The Nanoengineering Option provides broad skills suitable for entry to the nanotechnology professions, combining core Electrical Engineering and Physics courses with additional instruction in biochemistry and chemistry, and specialized instruction in nanoelectronics, nanobioengineering, and nanofabrication.
Required Courses and Suggested Course Sequence for Traditional Engineering Physics

Engineering Physics: Nanoengineering Option

Year 2

Term 3
- ECE 201 - Introduction to Electrical and Computer Engineering
- ECE 202 - Electrical Circuits I
- MAT E 201 - Materials Science I
- MATH 201 - Differential Equations
- MATH 209 - Calculus III
- PHYS 281 - Electricity and Magnetism
- PHYS 292 - Physics Laboratory A
- English Elective (3-0-0)

Term 4
- CH E 243 - Engineering Thermodynamics
- ECE 203 - Electrical Circuits II
- ECE 240 - Continuous Time Signals and Systems
- PHYS 244 - Mechanics
- PHYS 271 - Introduction to Modern Physics
- PHYS 292 - Physics Laboratory A
- Complementary Studies Elective (3-0-0)

Year 3

Term 5
- ECE 210 - Introduction to Digital Logic Design
- ECE 302 - Electronic Devices
- ECE 457 - Microfabrication and Devices
- ECE 471 - Photonics I
- MATH 311 - Theory of Functions of a Complex Variable
- PHYS 381 - Electromagnetic Theory I

Term 6
- ECE 220 - Programming for Electrical Engineering
- ECE 303 - Analog Electronics
- ECE 341 - Analytical Methods in Electrical Engineering
- PHYS 311 - Statistical Physics
- PHYS 372 - Quantum Mechanics A
- PHYS 397 - Projects in Experimental Physics

Year 4

Term 7
- CHEM 261 - Organic Chemistry I
- ECE 494 - Engineering Physics Design Project I
- ENG M 310 - Engineering Economy OR
- ENGG 404 - Engineering Safety and Loss Management
- PHYS 415 - Introduction to Condensed Matter Physics I
- PHYS 481 - Electromagnetic Theory II
- Program Elective
- Program Elective

Term 8
- ECE 360 - Control Systems I
- ECE 495 - Engineering Physics Design Project II
- ENG M 310 - Engineering Economy OR
- ENGG 400 - The Practice of the Engineering Profession
- ITS Elective
- Program Elective
- Program Elective

Notes
See Program and Technical Electives for restrictions on the five program electives.

Students may take an extra course per term if their GPA is at least 3.3.

Engineering Physics: Nanoengineering Option

Year 2

Term 3
- ECE 201 - Introduction to Electrical and Computer Engineering
- ECE 202 - Electrical Circuits I
- MAT E 201 - Materials Science I
- MATH 201 - Differential Equations
- MATH 209 - Calculus III
- PHYS 281 - Electricity and Magnetism
- PHYS 292 - Physics Laboratory A
- English Elective (3-0-0)

Term 4
- CH E 243 - Engineering Thermodynamics
- ECE 203 - Electrical Circuits II
- ECE 240 - Continuous Time Signals and Systems
- PHYS 244 - Mechanics
- PHYS 271 - Introduction to Modern Physics
- PHYS 292 - Physics Laboratory A
- Complementary Studies Elective (3-0-0)

Year 3

Term 5
- ECE 210 - Introduction to Digital Logic Design
- ECE 302 - Electronic Devices
- ECE 457 - Microfabrication and Devices
- ECE 471 - Photonics I
- MATH 311 - Theory of Functions of a Complex Variable
- PHYS 381 - Electromagnetic Theory I

Term 6
- ECE 220 - Programming for Electrical Engineering
- ECE 303 - Analog Electronics
- ECE 341 - Analytical Methods in Electrical Engineering
- PHYS 311 - Statistical Physics
- PHYS 372 - Quantum Mechanics A

Year 4

Term 7
- CHEM 261 - Organic Chemistry I
- ECE 494 - Engineering Physics Design Project I
- ENG M 310 - Engineering Economy OR
- ENGG 404 - Engineering Safety and Loss Management
- PHYS 415 - Introduction to Condensed Matter Physics I
- PHYS 481 - Electromagnetic Theory II
- Program Elective

Term 8
- BIOCH 200 - Introductory Biochemistry
- ECE 455 - Engineering of Nanobiotechnological Systems
- ECE 495 - Engineering Physics Design Project II
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- ENGG 400 - The Practice of the Engineering Profession
- ITS Elective
- Program Elective

Notes
See Program and Technical Electives for restrictions on the five program electives.

Students may take an extra course per term if their GPA is at least 3.3.
Required Courses and Suggested Course Sequence for Co-op Programs

Engineering Physics

Year 2

Fall Term 3
- ECE 201 - Introduction to Electrical and Computer Engineering
- ECE 202 - Electrical Circuits I
- ECE 210 - Introduction to Digital Logic Design
- ENGG 299 - Orientation to Cooperative Education
- MATH 201 - Differential Equations
- MATH 209 - Calculus III
- PHYS 281 - Electricity and Magnetism
- PHYS 292 - Physics Laboratory A

Winter Term 4
- CH E 243 - Engineering Thermodynamics
- ECE 203 - Electrical Circuits II
- ECE 240 - Continuous Time Signals and Systems
- PHYS 271 - Introduction to Modern Physics
- PHYS 292 - Physics Laboratory A
- English Elective (3-0-0)

Summer
- WKEXP 901 - Engineering Work Experience I

Year 3

Fall
- WKEXP 902 - Engineering Work Experience II

Winter Term 5
- ECE 302 - Electronic Devices
- ECE 340 - Discrete Time Signals and Systems
- MAT E 201 - Materials Science I
- MATH 311 - Theory of Functions of a Complex Variable
- PHYS 244 - Mechanics
- PHYS 311 - Statistical Physics

Summer
- WKEXP 903 - Engineering Work Experience III

Year 4

Fall
- WKEXP 904 - Engineering Work Experience IV

Winter Term 6
- ECE 303 - Analog Electronics
- ECE 341 - Analytical Methods in Electrical Engineering
- ECE 360 - Control Systems I
- PHYS 372 - Quantum Mechanics A
- PHYS 381 - Electromagnetic Theory I
- PHYS 397 - Projects in Experimental Physics

Summer
- WKEXP 905 - Engineering Work Experience V

Year 5

Fall Term 7
- ECE 471 - Photonics I
- ECE 494 - Engineering Physics Design Project I
- PHYS 415 - Introduction to Condensed Matter Physics I
- PHYS 481 - Electromagnetic Theory II
- Complementary Studies Elective (3-0-0)
- Program Elective
- Program Elective

Winter Term 8
- ECE 495 - Engineering Physics Design Project II
- ENG M 310 - Engineering Economy OR

Engineering Physics: Nanoengineering Option

Year 2

Fall Term 3
- ECE 201 - Introduction to Electrical and Computer Engineering
- ECE 202 - Electrical Circuits I
- ECE 210 - Introduction to Digital Logic Design
- ENGG 299 - Orientation to Cooperative Education
- MATH 201 - Differential Equations
- MATH 209 - Calculus III
- PHYS 281 - Electricity and Magnetism
- PHYS 292 - Physics Laboratory A

Winter Term 4
- CH E 243 - Engineering Thermodynamics
- ECE 203 - Electrical Circuits II
- ECE 240 - Continuous Time Signals and Systems
- PHYS 244 - Mechanics
- PHYS 271 - Introduction to Modern Physics
- PHYS 292 - Physics Laboratory A
- English Elective (3-0-0)

Summer
- WKEXP 901 - Engineering Work Experience I

Year 3

Fall
- WKEXP 902 - Engineering Work Experience II

Winter Term 5
- ECE 302 - Electronic Devices
- ECE 340 - Discrete Time Signals and Systems
- MAT E 201 - Materials Science I
- MATH 311 - Theory of Functions of a Complex Variable
- PHYS 244 - Mechanics
- PHYS 311 - Statistical Physics

Summer
- WKEXP 903 - Engineering Work Experience III

Year 4

Fall
- WKEXP 904 - Engineering Work Experience IV

Winter Term 6
- ECE 303 - Analog Electronics
- ECE 341 - Analytical Methods in Electrical Engineering
- ECE 455 - Engineering of Nanobiotechnological Systems
- ECE 456 - Introduction to Nanoelectronics
- PHYS 372 - Quantum Mechanics A
- PHYS 381 - Electromagnetic Theory I

Summer
- WKEXP 905 - Engineering Work Experience V

Year 5

Fall Term 7
- CHEM 261 - Organic Chemistry I
- ECE 471 - Photonics I
- ECE 494 - Engineering Physics Design Project I
- PHYS 415 - Introduction to Condensed Matter Physics I
- PHYS 481 - Electromagnetic Theory II
- Complementary Studies Elective (3-0-0)
- Program Elective
Program and Technical Electives - Engineering Physics

Of the four program electives at least two must be from:

- ECE 212 - Introduction to Microprocessors
- ECE 380 - Introduction to Communication Systems
- ECE 450 - Nanoscale Phenomena in Electronic Devices
- ECE 452 - Computation for Nanoelectronics
- ECE 457 - Microfabrication and Devices
- ECE 472 - Photonics II
- ECE 475 - Optoelectronic and Photovoltaic Devices
- ECE 476 - Engineering Electromagnetics II
- ECE 478 - Microwave Circuits

Any remaining program electives may be chosen from the following list of courses:

- BME 513 - Imaging Methods in Medicine
- BME 564 - Fundamentals of Magnetic Resonance Imaging, MRI
- ECE 304 - Digital Electronics
- ECE 330 - Introduction to Power Engineering
- ECE 332 - Electric Machines
- ECE 401 - Power Electronics
- ECE 402 - RF Communication Circuits
- ECE 403 - Integrated Circuit Design
- ECE 405 - Biophysical Measurement and Instrumentation
- ECE 410 - Advanced Digital Logic Design
- ECE 432 - Variable Speed Drives
- ECE 440 - Digital Computer Processing of Images
- ECE 442 - Introduction to Multimedia Signal Processing
- ECE 450 - Nanoscale Phenomena in Electronic Devices
- ECE 455 - Engineering of Nanobiotechnological Systems
- ECE 456 - Introduction to Nanoelectronics
- ECE 458 - Introduction to Microelectromechanical Systems
- ECE 460 - Control Systems II
- ECE 464 - Medical Robotics and Computer-Integrated Intervention
- ECE 474 - Introduction to Plasma Engineering
- ECE 485 - Digital Communications
- ECE 486 - Wireless Communications
- ECE 489 - Telecommunication System Engineering

Note Other courses from Faculty of Engineering and Faculty of Science (at the graduate or undergraduate level) can be substituted with Department approval.

Complementary Studies Electives

To better understand the role of Engineering within a broader social context, all programs require an element of complementary studies consisting of the humanities, social sciences, arts, management, engineering economics and communications. Aspects of these topics are covered in mandatory courses, but each program contains complementary studies electives so that students may explore areas of particular interest. Notwithstanding this, the Canadian Engineering Accreditation Board requires that programs include exposure to the central thought processes of the humanities and social sciences. One Complementary Studies Elective must be taken from List 1, normally in the First Year of the program. Further Complementary Studies Electives must be at the 200-level or above and should be selected from List 2 (see Course Listings for course descriptions and prerequisites). Note that in some cases, a course may appear both on a complementary studies list and as a program required or program elective course. A single course cannot be used to satisfy multiple course requirements under Programs of Study.

List 1 (First year)

- ANTHR 101 - Introductory Anthropology
- ANTHR 110 - Gender, Age, and Culture
- ANTHR 150 - Race and Racism
- CLASS 102 - Greek and Roman Mythology
- CLASS 103 - Introduction to Ancient Greece
- CLASS 104 - Introduction to Ancient Rome
- CLASS 110 - The Ancient World
- ECON 101 - Introduction to Microeconomics
- ECON 102 - Introduction to Macroeconomics
- ECON 204 - Principles of Economics
- ENGL 121 *
- ENGL 122 *
- ENGL 123 *
- ENGL 124 *
- ENGL 125 - Aboriginal Writing *
- HIST 110 - The Pre-Modern World
- HIST 111 - The Early Modern World
- HIST 112 - The Modern World
- HIST 114 - The History of the World in the Last 10 Years
- HIST 115 - Technology and History
- HIST 116 - The Emergence of the Atlantic World
- LING 100
- LING 101 - Introduction to Linguistic Analysis
- PHIL 120 - Symbolic Logic I
- PHIL 125 - Practical Logic
- POL S 101 - Introduction to Politics
- PSYCO 104 - Basic Psychological Processes
- SOC 100 - Introductory Sociology

Note: *A single D3 ENGL course cannot satisfy both a Complementary Studies Elective and the English Elective requirements.

List 2 (Second and higher years)

- ACCTG 300 - Introduction to Accounting
- ACCTG 311 - Introduction to Accounting for Financial Performance
- ANTHR 230 - Anthropology of Science, Technology, and Environment
- AREC 365 - Natural Resource Economics
- B LAW 301 - Legal Foundations of the Canadian Economy **
Materials Engineering

Materials Engineering involves engineering of materials themselves: materials are designed and selected for their function in society. Materials Engineering students will learn to think in the materials paradigm, which focuses on the interrelationships between structure, properties, processing, and performance. Materials Engineers also characterize the structure, properties, and performance of materials in order to determine interrelationships.

Students who want to take Materials Engineering will benefit by developing spatial reasoning skills, the ability to visualize technical information, and an interest in small length scales and how materials fail.

Materials Engineering involves selecting the length scale of the material (from molecular or atomic, to nano, micro and macro) and by choosing the class of material (from soft to hard to composites) while integrating this knowledge through the processing, structure, properties and performance of materials.

The discipline focuses on the production and engineering applications of metallic and non-metallic materials (polymers, ceramics, composites, electronic materials and biomaterials). Materials Engineers develop, modify, and use processes to convert raw materials to useful engineering materials with specified desirable properties. The discipline therefore includes aspects of materials production, materials processing, materials applications, and design. Materials Engineering embraces physics, chemistry and mechanics to understand processing and applications of materials.

Graduates of the program find employment in all sectors of the materials cycle. The primary sector is raw materials processing and includes such industries as mineral processing, aluminum smelting and steel making. The next sector is manufacturing and extends from the rolling of the metals to the materials engineering aspects of manufacturing products in the aerospace, automotive, electronics, photonics, and petrochemical industries. The final sector includes the service industries with such specialties as corrosion, wear, fracture mechanics and failure investigation. This sector also includes the recycling industries. In all sectors Materials Engineers are often involved with the selection of materials for use in designs, and are consulted for failure analysis.

The undergraduate Materials Engineering program, the only one of its kind in the prairie provinces, includes a set of core materials engineering courses emphasizing underlying principles and their engineering applications. With the program electives it is possible for the students to go into more depth in particular areas of interest, e.g., mineral processing and extractive metallurgy, polymer materials, structural materials, and functional materials.

Elective Streams in Materials Engineering

1. Mineral Processing and Extractive Metallurgy: Metallic and nonmetallic materials such as gold, copper, iron (steel) and ceramics are extracted from mineral resources. Mineral processing and extractive metallurgy is therefore an integral part of materials engineering and an important engineering field that contributes to Canada’s economy. The Mineral Processing and Extractive Metallurgy elective stream will introduce students to the fundamental theories of mineral processing, hydrometallurgy, electrometallurgy and pyrometallurgy, and current practices of unit operations of these processes. The graduates from this elective stream will be able to find employment in Canadian resource sectors, especially in oil sands, coal, base metal, precious metal, potash and diamond ore processing industries.

2. Polymer Materials: The polymer materials elective stream is designed for students who are interested in acquiring a basic knowledge in the field of polymer materials, structural materials, and functional materials.
polymers: structure–property relationships, polymerization reactions and polymer processing so that upon completion of the option, they will have the knowledge to embark on graduate level research in polymer science and engineering and will be employable by polymer manufacturers and polymer processing industry.

3. Structural Materials: Students completing this elective stream will be proficient in the traditional areas of metallurgical and materials engineering, i.e., physical metallurgy and materials processing. Employment opportunities exist in several sectors of Canadian industry including, but not restricted to, primary metal extraction, steel processing, oil and gas, failure analysis, automotive and consulting.

4. Functional Materials: Functional materials are those which exhibit inherent properties and functions (e.g., piezoelectricity, magnetism, ferroelectricity, or energy storage). Functional materials can be in any class of material – ceramics, metals, polymers, semiconductors, or composites. Subject areas in this stream cover electronic, optical and magnetic materials, thin film materials, nanomaterials and their applications, nanostructured molecular sieves, nano and functional materials processing and fabrication. Employment opportunities exist in several sectors of Canadian industry, such as microelectronic/optoelectronic device fabrication, MEMS processing and fuel cell development.

Required Courses and Suggested Course Sequence for Traditional

Materials

Year 2

Term 3
- CH E 243 - Engineering Thermodynamics
- CHEM 261 - Organic Chemistry I
- CME 200 - Introduction to Chemical and Materials Engineering
- MAT E 202 - Materials Science II
- MATH 209 - Calculus III
- STAT 235 - Introductory Statistics for Engineering
- ITS Elective (3-0-0)

Term 4
- CIV E 270 - Mechanics of Deformable Bodies I
- CME 265 - Process Analysis
- English Elective (3-0-0)
- MATH 201 - Differential Equations
- MAT E 204 - Materials Engineering Thermodynamics
- MAT E 211 - Characterization of Materials

Year 3

Term 5
- CH E 312 - Fluid Mechanics
- CH E 374 - Computational Methods in Engineering
- Complementary Studies Elective (3-0-0)
- MAT E 335 - Phase Transformations I
- MAT E 341 - Applied Electrochemistry
- MAT E 361 - Materials Engineering Laboratory I

Term 6
- ENGG 404 - Engineering Safety and Loss Management
- CH E 314 - Heat Transfer
- MAT E 336 - Phase Transformations II
- MAT E 345 - Corrosion, Oxidation, and Degradation
- MAT E 351 - Mechanical Properties
- MAT E 362 - Materials Engineering Laboratory II

Year 4

Term 7
- CME 481 - Colloquium I
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- MAT E 461 - Materials Engineering Laboratory III
- MAT E 464 - Materials Process Engineering Design
- MAT E 473 - Processing of Materials
- Program Elective (3-0-0)

Term 8
- CME 483 - Colloquium II
- ENGG 400 - The Practice of the Engineering Profession
- MAT E 465 - Materials Design Project
- MAT E 474 - Performance of Materials
- Program Elective (3-0-0)
- Program Elective (3-0-0)
- Complementary Studies Elective (3-0-0)

Notes

See Program and Technical Electives for restrictions on the three program electives.

Students who are interested in Structural Materials, Mineral Processing and Extractive Metallurgy, Functional Materials, or Polymer Materials Elective Streams should consult the Department for course schedules.

Required Courses and Suggested Course Sequence for Co-op Programs

Materials

Year 2

Fall Term 3
- CH E 243 - Engineering Thermodynamics
- CHEM 261 - Organic Chemistry I
- CME 200 - Introduction to Chemical and Materials Engineering
- ENGG 299 - Orientation to Cooperative Education
- MAT E 202 - Materials Science II
- MATH 209 - Calculus III
- STAT 235 - Introductory Statistics for Engineering

Winter Term 4
- CIV E 270 - Mechanics of Deformable Bodies I
- CME 265 - Process Analysis
- CH E 312 - Fluid Mechanics
- MATH 201 - Differential Equations
- MAT E 204 (3-1s-0)
- MAT E 211 - Characterization of Materials

Summer
- WKEXP 901 - Engineering Work Experience I

Year 3

Fall Term 5
- English Elective (3-0-0)
- CH E 314 - Heat Transfer
- CH E 374 - Computational Methods in Engineering
- MAT E 335 - Phase Transformations I
- MAT E 341 - Applied Electrochemistry
- MAT E 361 - Materials Engineering Laboratory I

Winter
- WKEXP 902 - Engineering Work Experience II

Summer
- WKEXP 903 - Engineering Work Experience III

Year 4

Fall Term 6
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- ENGG 404 - Engineering Safety and Loss Management
- MAT E 464 - Materials Process Engineering Design
- ITS Elective (3-0-0)
- Program Elective (3-0-0)
- Complementary Studies Elective (3-0-0)

Winter Term 7
- Complementary Studies Elective (3-0-0)
- ITS Elective (3-0-0)
The three program electives should be CME 421, CME 422, and CME 472.
Students interested in this elective stream should consult the Department for a course schedule.

Polymer Materials Elective Stream

The three program electives should be CME 482, CME 484, and CME 485.
Students interested in this elective stream should consult the Department for a course schedule.

Structural Materials Elective Stream

Two of the three program electives should be CME 472 and MAT E 476. The third program elective can be one of MAT E 466, MAT E 470, MAT E 471 or CME 472.
Students interested in this elective stream should consult the Department for a course schedule.

Functional Materials Elective Stream

The two of the three program electives should be MAT E 491 and MAT E 494. The third program elective can be selected from list (1).
Students interested in this elective stream should consult the Department for a course schedule.
Complementary Studies Electives

To better understand the role of Engineering within a broader social context, all programs require an element of complementary studies consisting of the humanities, social sciences, arts, management, engineering economics and communications. Aspects of these topics are covered in mandatory courses but each program contains complementary studies electives so that students may explore areas of particular interest. Notwithstanding this, the Canadian Engineering Accreditation Board requires that programs include exposure to the central thought processes of the humanities and social sciences. One Complementary Studies Elective must be taken from List 1, normally in the First Year of the program. Further Complementary Studies Electives must be at the 200-level or above and should be selected from List 2 (see Course Listings for course descriptions and prerequisites). Note that in some cases, a course may appear both on a complementary studies list and as a program required or program elective course. A single course cannot be used to satisfy multiple course requirements under Programs of Study.

List 1 (First year)

- ANTHR 101 - Introductory Anthropology
- ANTHR 110 - Gender, Age, and Culture
- ANTHR 150 - Race and Racism
- CLASS 102 - Greek and Roman Mythology
- CLASS 103 - Introduction to Ancient Greece
- CLASS 104 - Introduction to Ancient Rome
- CLASS 110 - The Ancient World
- ECON 101 - Introduction to Microeconomics
- ECON 102 - Introduction to Macroeconomics
- ECON 204 - Principles of Economics
- ENGL 121 *
- ENGL 122 *
- ENGL 123 *
- ENGL 124 *
- ENGL 125 - Aboriginal Writing *
- HIST 110 - The Pre-Modern World
- HIST 111 - The Early Modern World
- HIST 112 - The Modern World
- HIST 114 - The History of the World in the Last 10 Years
- HIST 115 - Technology and History
- HIST 116 - The Emergence of the Atlantic World
- LING 100
- LING 101 - Introduction to Linguistic Analysis
- PHIL 120 - Symbolic Logic I
- PHIL 125 - Practical Logic
- POL S 101 - Introduction to Politics
- PSYCO 104 - Basic Psychological Processes
- SOC 100 - Introductory Sociology

Note: *A single D3 ENGL course cannot satisfy both a Complementary Studies Elective and the English Elective requirements.

List 2 (Second and higher years)

- ACCTG 300 - Introduction to Accounting
- ACCTG 311 - Introduction to Accounting for Financial Performance
- ANTHR 230 - Anthropology of Science, Technology, and Environment
- AREC 365 - Natural Resource Economics
- B LAW 301 - Legal Foundations of the Canadian Economy **
- B LAW 422 - Law of Business Organizations
- B LAW 428 - Natural Resource and Environmental Law ***
- B LAW 432 - The Legal Regulation of Business
- CHRTC 350 - Science and Religion: Christian Perspectives
- CLASS 254 - Introduction to Greek Art and Archaeology
- CLASS 255 - Introduction to Roman Art and Archaeology
- CLASS 283 - Introductory Roman History II
- CLASS 294 - Ancient Science, Technology, and Medicine
- CLASS 374 - Early Civilization I
- ECON 204 - Principles of Economics
- ECON 281 - Intermediate Microeconomic Theory I
- ECON 292 - Intermediate Macroeconomic Theory I
- ECON 305
- ENGG 420 - Engineering Law
- ENG M 402 - Project Management and Entrepreneurship
- ENG M 406 - Adapting Technology to Meet Societal Needs
- HECOL 211 - Human Sexuality
- HIST 260 - Pre-Confederation Canada
- HIST 261 - Post-Confederation Canada
- HIST 295 - 20th-Century Warfare
- HIST 296
- HIST 306
- HIST 307 - History of Science I
- HIST 308 - History of Science II
- INT D 257
- INT D 303 - Economics of World Food and Agriculture
- LA ST 210 - South America
- LING 204 - English Syntax
- LING 205 - Phonetics
- MARK 301 - Introduction to Marketing
- OM 352 - Operations Management
- PHIL 205 - Philosophy of Mind
- PHIL 220 - Symbolic Logic II
- PHIL 250 - Contemporary Ethical Issues
- PHIL 265 - Philosophy of Science
- PHIL 325 - Risk, Choice, and Rationality
- PHIL 366 - Computers and Culture
- PHIL 375 - Science and Society
- PHIL 380 - Philosophy of Criticism
- POL S 220
- POL S 221
- POL S 223 - City Government and Politics
- POL S 286
- PSYCO 258 - Cognitive Psychology
- PSYCO 275 - Brain and Behavior
- R SOC 355 - Rural Communities and Global Economies
- R SOC 365 - Sociology of Environment and Development
- SME 290 - Introduction to Management for Non-Business Students
- SME 301 - Behavior in Organizations
- SOC 212 - Classical Social Theory
- SOC 224 - Sociology of Deviance and Conformity
- SOC 225 - Criminology
- SOC 241 - Social Psychology
- SOC 242
- SOC 251 - Population and Society
- SOC 301 - Sociology of Gender
- WGS 201

Notes:

- **Not available to Civil students**
- ***Not available to Civil (Environmental Engineering Option) students.***

A second course from the ITS List may be taken as part of List 2. However, a single course cannot be used to satisfy both the ITS and Complementary Studies requirements. This list is updated annually. Courses that teach a language or the application of a particular skill (such as courses in physical education, music and art) do not meet the intent of the Accreditation Board with respect to complementary studies and are therefore not eligible.

Impact of Technology on Society (ITS) Elective

A specific requirement of the Canadian Engineering Accreditation Board is study of the impact of technology on society. To meet this requirement, students must take one of the following:

- ENG M 403
- ENG M 405 - Engineering, Business and Society
- HIST 115 - Technology and History
- HIST 391 - History of Technology
- HGP 250 - Natural Resources and Environmental Management
- INT D 361 - Fundamentals of Energy, Environment and Sustainability
- PHIL 265 - Philosophy of Science
- PHIL 366 - Computers and Culture
- PHIL 375 - Science and Society
- STS 200 - Introduction to Studies in Science, Technology and Society
- SOC 366 - People in Industry
- SOC 383 - Sociology of Work and Industry

English Electives

Most engineering programs require a single-term (3-0-0) English course. This is typically ENGL 199, but ENGL 121, ENGL 122, ENGL 123, ENGL 124 and ENGL 125 are also acceptable.
Mechanical Engineering

Mechanical engineering covers a diverse range of engineering fields with five major areas of study: solid mechanics and dynamics, fluid mechanics, thermodynamics, mechanical design, and engineering management. Examples of more specialized areas of work are acoustics, aerodynamics, biomechanical engineering, combustion engines, energy conversion systems, environmental engineering, material science including fracture and fatigue, robotics and vehicle design.

The undergraduate program initially exposes students to a wide range of topics covering the fundamentals. Advanced courses and electives provide more specialized knowledge and emphasize applications. Many courses include experimental laboratories to give students hands-on experience with current engineering and measurement equipment. Throughout the program, several courses are devoted to mechanical engineering design. Working on individual and group projects, students apply engineering principles to challenging design projects and develop communication skills through oral and written presentations as well as preparation of drawings for fabrication in the department’s machine shop. Computers are used extensively in the program; students are involved in programming and in using engineering analysis and design packages.

Areas of Study

Solid Mechanics and Dynamics
Mechanical engineers are involved in the design of structures and mechanical components to safely withstand normal working stresses. Many structures and machines are also subjected to additional stresses caused by vibrations, for example, due to the imbalance in a compressor or engine, and these effects can be critical for their safe use. Stress analysis predicts the internal loads in a component and allows the designer to select materials and shapes suitable for the service the component will experience. Traditional materials such as steel and aluminium as well as recently developed materials such as ceramics and fibre-reinforced composites are considered to optimize the component’s performance.

Fluid Mechanics
Fluid mechanics is concerned with the motions of liquids and gases and the machinery that causes that motion (e.g., pumps) or uses it (e.g., windmills). Applications include acoustics, aerodynamics, meteorology, pollutant dispersion, pumps, fans, turbines, pipelines, and lubrication. Mechanical engineers with a specialization in fluid mechanics, design, and improve a wide range of fluids-related equipment as well as investigate concerns related to the flow of water and air in the environment. Another major area of work for mechanical engineers with a fluid mechanics background is in the aerodynamics industry designing everything from wings to jet engines.

Thermodynamics
Applied thermodynamics is the study of energy conversion from one form to another. A typical application is electricity production. Energy from the combustion of fuels like coal, oil, or natural gas is used to heat a fluid such as water or air, and then the fluid is expanded through machinery to produce mechanical work and drive a generator. The electricity produced is an easily transported form of energy that can be used at locations remote to the original energy source. Mechanical engineers with a specialization in thermodynamics design and improve power plants, engines, heat exchangers, and other forms of equipment. Specific examples include heating, ventilation and air conditioning systems for living space and industrial processes, use of alternate fuels in engines, and reducing pollution from internal combustion engines.

Design
The design process starts with recognizing a need for a new product, device, or industrial process and then carries on to defining the problem to be solved, gathering necessary information, performing the required analysis and optimization, building prototypes, and evaluating different concepts. There is usually no single correct solution for a given design problem as different designs may all solve the same problem. Some designs are better than others, as they may be lighter or more efficient or cost less, so that by constant refinement and iteration throughout the design process, acceptable designs can be made.

Engineering Management
Many engineering graduates spend a significant part of their career as managers of plants, companies, or other engineers. Engineering management bridges the gap between engineering and management. These engineers deal with areas such as management of engineering processes, engineering economics, operations management, quality improvement, quality control, and the use of computers in business.

Biomedical Option in Mechanical Engineering
Applications of mechanical engineering to biomedical problems range from understanding the intricacies of fluid flows in the heart and lungs to the design of artificial joints, implants, orthopedic devices, and medical equipment and instrumentation. Exciting opportunities exist for innovative solutions to numerous health care problems by applying knowledge contained within the discipline of mechanical engineering. Such solutions typically require interdisciplinary teams for which the broad background in fundamentals obtained in mechanical engineering is an asset. Examples include the ever-increasing use of mechanical systems to assist or replace various portions of the anatomy, and the application of system modeling and design methods in areas from diagnosis to aids for rehabilitation.

For students considering a career in this expanding area, the Department of Mechanical Engineering offers two choices within its program. Both include all the broad core of mechanical engineering studies which are enhanced by the biomedical options. Both provide a good preparation for graduate studies in the biomedical engineering field. The first, which is available to all students, replaces the elective courses in the regular program with a stream of essential introductory courses in biomedical engineering and a course in biomechanics. The second is a degree option, for a limited group of students in the cooperative engineering program, that includes a number of additional required courses and a four month clinical placement at a hospital or research institute. The overall length of the program is the same as for the regular co-op programs in the department. The additional courses are specified to provide a well-rounded introduction to biomedical engineering and biomechanics. Electives can be chosen from an approved list of courses to suit the interest of the individual student. Students completing this option will be granted a degree in Mechanical Engineering (Biomedical). With a suitable choice of electives (supplemented by at most two additional courses), students will also be qualified to apply to the Faculty of Medicine and Dentistry at the University of Alberta.

Required Courses and Suggested Course Sequence for Traditional

Mechanical

Year 2

Fall Term 3
- CIV E 270 - Mechanics of Deformable Bodies I
- MATH 209 - Calculus III
- STAT 235 - Introductory Statistics for Engineering
- Course Group 2A
- CH E 243 - Engineering Thermodynamics
- MEC E 200 - Introduction to Mechanical Engineering
- MEC E 250 - Engineering Mechanics II

OR

Course Group 2B
- MEC E 230 - Introduction to Thermo-Fluid Sciences
- MEC E 260 - Mechanical Design I
- MEC E 265 - Engineering Graphics and CAD

Winter Term 4
- ECE 209 - Fundamentals of Electrical Engineering
- MAT E 202 - Materials Science II
- MATH 201 - Differential Equations

Course Group 2A
- CH E 243 - Engineering Thermodynamics
- MEC E 200 - Introduction to Mechanical Engineering
- MEC E 250 - Engineering Mechanics II
Year 2

Fall Term 3
- ENGG 404 - Engineering Safety and Loss Management
- ENGG 401 - Financial Management for Engineers
- ENGG 404 - Engineering Safety and Loss Management

Winter Term 4
- CH E 243 - Engineering Thermodynamics
- ECE 209 - Fundamentals of Electrical Engineering
- MAT E 202 - Materials Science II
- MEC E 200 - Introduction to Mechanical Engineering
- MEC E 250 - Engineering Mechanics II

Summer Term 5
- MEC E 330 - Fluid Mechanics II
- MEC E 371 - Heat Transfer
- MEC E 380 - Advanced Strength of Materials I

Year 3

Fall Term 6
- Course Group 3A-alt
- MATH 300 - Advanced Boundary Value Problems I
- MEC E 230 - Introduction to Thermo-Fluid Sciences
- MEC E 260 - Mechanical Design I
- MEC E 265 - Engineering Graphics and CAD
- MEC E 330 - Fluid Mechanics I
- MEC E 371 - Heat Transfer
- MEC E 380 - Advanced Strength of Materials I

Winter Term 8
- CH E 448 - Process Control for Mechanical Engineers
- ECE 362 - Fundamentals of Control Systems Engineering

Mechanical: Alternate Format

Year 2

Fall Term 3
- ENGG 404 - Engineering Safety and Loss Management
- ENGG 401 - Financial Management for Engineers
- ENGG 404 - Engineering Safety and Loss Management

Winter Term 4
- CH E 243 - Engineering Thermodynamics
- ECE 209 - Fundamentals of Electrical Engineering
- MAT E 202 - Materials Science II
- MEC E 200 - Introduction to Mechanical Engineering
- MEC E 250 - Engineering Mechanics II

Year 3

Fall Term 6
- Course Group 3A-alt
- MATH 300 - Advanced Boundary Value Problems I
- MEC E 230 - Introduction to Thermo-Fluid Sciences
- MEC E 260 - Mechanical Design I
- MEC E 265 - Engineering Graphics and CAD
- MEC E 330 - Fluid Mechanics I
- MEC E 371 - Heat Transfer
- MEC E 380 - Advanced Strength of Materials I

Winter Term 8
- CH E 448 - Process Control for Mechanical Engineers
- ECE 362 - Fundamentals of Control Systems Engineering
Winter Term 7

Course Group 3A-alt
- MATH 300 - Advanced Boundary Value Problems I
- MEC E 300 - Mechanical Measurements
- MEC E 301 - Mechanical Engineering Laboratory I
- MEC E 331 - Fluid Mechanics I
- MEC E 371 - Heat Transfer
- MEC E 380 - Advanced Strength of Materials I

OR

Course Group 3B-alt
- MEC E 340 - Applied Thermodynamics
- MEC E 360 - Mechanical Design II
- MEC E 362 - Mechanics of Machines
- MEC E 390 - Numerical Methods of Mechanical Engineers
- Program Elective (3-0-0)

Summer Term 8

- Program Elective (3-0-0)
- Program Elective (3-0-0)

Course Group 4A-alt
- MEC E 430 - Fluid Mechanics II OR
- MEC E 480 - Advanced Strength of Materials II
- MEC E 463 - Thermo-Fluids Systems Design
- Program Elective (3-0-0)

OR

Course Group 4B-alt
- MEC E 403 - Mechanical Engineering Laboratory II
- MEC E 451 - Vibrations and Sound
- MEC E 460 - Design Project

Year 4

Fall Term 9
- CH E 448 - Process Control for Mechanical Engineers OR
- ECE 362 - Fundamentals of Control Systems Engineering OR
- MEC E 420 - Feedback Control Design of Dynamic Systems
- ENGG 400 - The Practice of the Engineering Profession
- Course Group 4A-alt
- MEC E 430 - Fluid Mechanics II OR
- MEC E 480 - Advanced Strength of Materials II
- MEC E 463 - Thermo-Fluids Systems Design
- Program Elective (3-0-0)

OR

Course Group 4B-alt
- MEC E 403 - Mechanical Engineering Laboratory II
- MEC E 451 - Vibrations and Sound
- MEC E 460 - Design Project

Notes
1. See Mechanical (Program and Technical Electives) for restrictions on the four program electives.
2. Offered in consecutive terms, including Summer, from Term 3 to Term 9.
3. In each term of years 3 and 4, students take either Group A-alt then Group B-alt, or Group B-alt then Group A-alt.

Required Courses and Suggested Course Sequence for Co-op Programs

Mechanical Plan I

Year 2

Fall Term 3
- CIV E 270 - Mechanics of Deformable Bodies I
- ENGG 299 - Orientation to Cooperative Education

- MATH 209 - Calculus III
- MEC E 230 - Introduction to Thermo-Fluid Sciences
- MEC E 260 - Mechanical Design I
- MEC E 265 - Engineering Graphics and CAD
- STAT 235 - Introductory Statistics for Engineering

Winter Term 4
- CH E 243 - Engineering Thermodynamics
- ECE 209 - Fundamentals of Electrical Engineering
- MAT E 202 - Materials Science II
- MATH 201 - Differential Equations
- MEC E 200 - Introduction to Mechanical Engineering
- MEC E 250 - Engineering Mechanics II

Summer
- WKEXP 901 - Engineering Work Experience I

Year 3

Fall
- WKEXP 902 - Engineering Work Experience II

Winter Term 5

Course Group 3A
- MATH 300 - Advanced Boundary Value Problems I
- MEC E 300 - Mechanical Measurements
- MEC E 301 - Mechanical Engineering Laboratory I
- MEC E 331 - Fluid Mechanics I
- MEC E 371 - Heat Transfer
- MEC E 380 - Advanced Strength of Materials I

OR

Course Group 3B
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers

- English Elective (3-0-0)
- MEC E 340 - Applied Thermodynamics
- MEC E 360 - Mechanical Design II
- MEC E 362 - Mechanics of Machines
- MEC E 390 - Numerical Methods of Mechanical Engineers

Summer
- WKEXP 903 - Engineering Work Experience III

Year 4

Fall
- WKEXP 904 - Engineering Work Experience IV

Winter Term 6

Course Group 3A
- MATH 300 - Advanced Boundary Value Problems I
- MEC E 300 - Mechanical Measurements
- MEC E 301 - Mechanical Engineering Laboratory I
- MEC E 331 - Fluid Mechanics I
- MEC E 371 - Heat Transfer
- MEC E 380 - Advanced Strength of Materials I

OR

Course Group 3B
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers

- English Elective (3-0-0)
- MEC E 340 - Applied Thermodynamics
- MEC E 360 - Mechanical Design II
- MEC E 362 - Mechanics of Machines
- MEC E 390 - Numerical Methods of Mechanical Engineers

Summer Term 7
- ENGG 404 - Engineering Safety and Loss Management
- Program Elective (3-0-0)
- Program Elective (3-0-0)

- MEC E 430 - Fluid Mechanics II OR
- MEC E 480 - Advanced Strength of Materials II
- MEC E 463 - Thermo-Fluids Systems Design
- Program Elective (3-0-0)

Year 5

Fall
- WKEXP 905 - Engineering Work Experience V

Winter Term 8
- CH E 448 - Process Control for Mechanical Engineers OR
- ECE 362 - Fundamentals of Control Systems Engineering OR
- MEC E 420 - Feedback Control Design of Dynamic Systems
- ENGG 400 - The Practice of the Engineering Profession
- ITS Elective (3-0-0)
- MEC E 403 - Mechanical Engineering Laboratory II
- MEC E 451 - Vibration and Sound
- MEC E 460 - Design Project
- Program Elective (3-0-0)

Note: See Program and Technical Electives for restrictions on the four program electives.

Mechanical Plan II

Year 2

Fall Term 3
- CH E 243 - Engineering Thermodynamics
- CIV E 270 - Mechanics of Deformable Bodies I
- ENGG 299 - Orientation to Cooperative Education
- MATH 209 - Calculus III
- MEC E 200 - Introduction to Mechanical Engineering
- MEC E 260 - Mechanical Design I
- STAT 235 - Introductory Statistics for Engineering

Winter
- WKEXP 901 - Engineering Work Experience I

Summer Term 4
- ECE 209 - Fundamentals of Electrical Engineering
- MAT E 202 - Materials Science II
- MATH 201 - Differential Equations
- MEC E 230 - Introduction to Thermo-Fluid Sciences
- MEC E 260 - Mechanical Design I
- MEC E 265 - Engineering Graphics and CAD

Year 3

Fall Term 5

Course Group 3B
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- English Elective (3-0-0)
- MEC E 340 - Applied Thermodynamics
- MEC E 380 - Mechanical Design II
- MEC E 362 - Mechanics of Machines
- MEC E 390 - Numerical Methods of Mechanical Engineers

Winter
- WKEXP 902 - Engineering Work Experience II

- Summer
- WKEXP 903 - Engineering Work Experience III

Year 4

Fall Term 6

Course Group 3A
- MATH 300 - Advanced Boundary Value Problems I
- MEC E 300 - Mechanical Measurements
- MEC E 301 - Mechanical Engineering Laboratory I
- MEC E 331 - Fluid Mechanics I
- MEC E 371 - Heat Transfer

- MEC E 380 - Advanced Strength of Materials I
- WKEXP 904 - Engineering Work Experience IV

Summer Term 7

- Program Elective (3-0-0)
- Program Elective (3-0-0)
- ITS Elective (3-0-0)
- MEC E 403 - Mechanical Engineering Laboratory II
- MEC E 451 - Vibration and Sound
- MEC E 460 - Design Project

Note: See Program and Technical Electives for restrictions on the four program electives.

Mechanical Plan III: Biomedical Option

Year 2

Fall Term 3
- CIV E 270 - Mechanics of Deformable Bodies I
- ENGG 299 - Orientation to Cooperative Education
- MATH 209 - Calculus III
- STAT 235 - Introductory Statistics for Engineering
- CH E 243 - Engineering Thermodynamics
- MEC E 200 - Introduction to Mechanical Engineering
- MEC E 260 - Engineering Mechanics II

Winter Term 4
- ECE 209 - Fundamentals of Electrical Engineering
- MAT E 202 - Materials Science II
- MATH 201 - Differential Equations
- MEC E 230 - Introduction to Thermo-Fluid Sciences
- MEC E 260 - Mechanical Design I
- MEC E 265 - Engineering Graphics and CAD

Summer
- WKEXP 902 - Engineering Work Experience II

Year 3

Fall Term 5
- BME 320 - Human Anatomy and Physiology; Cells and Tissue
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- MEC E 340 - Applied Thermodynamics
- MEC E 360 - Mechanical Design II
- MEC E 362 - Mechanics of Machines
- MEC E 390 - Numerical Methods of Mechanical Engineers

Winter
- WKEXP 903 - Engineering Work Experience III

Summer Term 6
- MATH 300 - Advanced Boundary Value Problems I
- MEC E 300 - Mechanical Measurements
• MEC E 301 - Mechanical Engineering Laboratory I
• MEC E 331 - Fluid Mechanics I
• MEC E 371 - Heat Transfer
• MEC E 380 - Advanced Strength of Materials I

Year 4

Fall Term 7
• BME 321 - Human Anatomy and Physiology: Systems
• ENGG 404 - Engineering Safety and Loss Management
• English Elective (3-0-0)
• MEC E 563 - Finite Element Method for Mechanical Engineering
• Program Elective (3-0-0)
• STAT 337 - Biostatistics

Winter
• WKEXP 904 - Engineering Work Experience IV
• Summer
• WKEXP 906 - Engineering Work Experience VI

Year 5

Fall Term 8
• ITS Elective (3-0-0)
• MEC E 430 - Fluid Mechanics II
• MEC E 463 - Thermo-Fluids Systems Design
• Program Elective (3-0-0)
• Program Elective (3-0-0)
• MEC E 420 - Feedback Control Design of Dynamic Systems
• ENGG 400 - The Practice of the Engineering Profession
• MEC E 485 - Biomechanical Modelling of Human Tissues and Systems
• MEC E 403 - Mechanical Engineering Laboratory II
• MEC E 451 - Vibrations and Sound
• MEC E 460 - Design Project
• PHIL 386 - Health Care Ethics

Notes

See Mechanical (Biomedical Option) for restrictions on the program electives.
The order of WKEXP 904 and WKEXP 906 may be switched. See the program advisor.

Students wishing to apply for admission to the Faculty of Medicine and Dentistry MD program should see Mechanical (Biomedical Option).

Mechanical Plan IV

Year 2

Fall Term 3
• CIV E 270 - Mechanics of Deformable Bodies I
• ENGG 299 - Orientation to Cooperative Education
• MATH 209 - Calculus III
• STAT 235 - Introductory Statistics for Engineering
• MEC E 230 - Introduction to Thermo-Fluid Sciences
• MEC E 260 - Mechanical Design I
• MEC E 265 - Engineering Graphics and CAD

Winter Term 4
• ECE 209 - Fundamentals of Electrical Engineering
• MAT E 202 - Materials Science II
• MATH 201 - Differential Equations
• CH E 243 - Engineering Thermodynamics
• MEC E 200 - Introduction to Mechanical Engineering
• MEC E 250 - Engineering Mechanics II

Summer Term 5

Course Group 3A
• MATH 300 - Advanced Boundary Value Problems I
• MEC E 300 - Mechanical Measurements
• MEC E 301 - Mechanical Engineering Laboratory I
• MEC E 331 - Fluid Mechanics I
• MEC E 371 - Heat Transfer
• MEC E 380 - Advanced Strength of Materials I

OR

Course Group 3B
• ENG M 310 - Engineering Economy OR
• ENG M 401 - Financial Management for Engineers
• English Elective (3-0-0)
• MEC E 340 - Applied Thermodynamics
• MEC E 360 - Mechanical Design I
• MEC E 362 - Mechanics of Machines
• MEC E 390 - Numerical Methods of Mechanical Engineers

Year 3

Fall
• WKEXP 901 - Engineering Work Experience I

Winter
• WKEXP 902 - Engineering Work Experience II

Summer Term 6

Course Group 3A
• MATH 300 - Advanced Boundary Value Problems I
• MEC E 300 - Mechanical Measurements
• MEC E 301 - Mechanical Engineering Laboratory I
• MEC E 331 - Fluid Mechanics I
• MEC E 371 - Heat Transfer
• MEC E 380 - Advanced Strength of Materials I

OR

Course Group 3B
• ENG M 310 - Engineering Economy OR
• ENG M 401 - Financial Management for Engineers
• English Elective (3-0-0)
• MEC E 340 - Applied Thermodynamics
• MEC E 360 - Mechanical Design I
• MEC E 362 - Mechanics of Machines
• MEC E 390 - Numerical Methods of Mechanical Engineers

Year 4

Fall
• WKEXP 903 - Engineering Work Experience III

Winter
• WKEXP 904 - Engineering Work Experience IV
• Summer
• WKEXP 905 - Engineering Work Experience V

Year 5

Fall Term 7
• Program Elective (3-0-0)
• Program Elective (3-0-0)
• ENGG 404 - Engineering Safety and Loss Management
• MEC E 430 - Fluid Mechanics II OR
• MEC E 480 - Advanced Strength of Materials II
• MEC E 463 - Thermo-Fluids Systems Design
• Program Elective (3-0-0)

Winter Term 8
• CH E 448 - Process Control for Mechanical Engineers OR
• ECE 362 - Fundamentals of Control Systems Engineering OR
• MEC E 420 - Feedback Control Design of Dynamic Systems
• ENGG 400 - The Practice of the Engineering Profession
• ITS Elective (3-0-0)
• MEC E 403 - Mechanical Engineering Laboratory II
• MEC E 451 - Vibrations and Sound
• MEC E 460 - Design Project
• Program Elective (3-0-0)

Note:
• See Mechanical (Program and Technical Electives) for restrictions on the four program electives.

Program and Technical Electives

Mechanical

One program elective must be chosen from the following:

- MEC E 467 - Modelling and Simulation of Engineering Systems
- MEC E 468 - Numerical Simulation in Mechanical Engineering Design
- MEC E 539 - Applied Computational Fluid Dynamics
- MEC E 563 - Finite Element Method for Mechanical Engineering

The remaining three program electives must be chosen from the following:

- MEC E 563 - Finite Element Method for Mechanical Engineering
- MEC E 564 - Design and Simulation of Micro-Electromechanical Systems (MEMS)
- MEC E 569 - Mechanics and Design of Composite-Electrical Engineering Systems
- OM 352 - Operations Management
- PET E 275 - Petroleum Reservoir Fluids
- PET E 364 - Drilling Engineering
- PET E 365 - Well Logging and Formation Evaluation
- PET E 366 - Petroleum Production Operations
- PET E 444 - Natural Gas Engineering
- PHYS 230 - Electricity and Magnetism
- SMO 301 - Behavior in Organizations
- SMO 321 - Introduction to Strategic Management and Organization Design

Notes

Other courses, including graduate-level ENG M and MEC E courses, may be taken with Department approval. Program elective courses (including transfer courses) must be at 300-level or above unless cleared in advance by the Department or specified for particular streams.

Note that some courses have prerequisites that must be satisfied.

Biomedical Engineering Elective Stream

Students wishing to specialize in the area of biomedical engineering should choose their three program electives from the following courses:

- BME 320 - Human Anatomy and Physiology: Cells and Tissue
- BME 321 - Human Anatomy and Physiology: Systems
- BME 410 - Introduction to Biomedical Engineering and Biomedical Systems Modelling

In particular, BME 320, BME 321, and MEC E 485 are especially recommended.

Note:

In BME 320, BME 321, and MEC E 485 are especially recommended.

Some of these courses may not be offered every year. See department for details.

Business and Management Elective Stream

Students wishing to obtain an introduction to business and management principles should take ENG M 401 instead of ENG M 310, ENG M 405 as their ITS elective, and ECON 204 as their complementary studies elective in Term 8. In addition, they can choose their program electives from the following:

Within the Faculty of Engineering:

- ENGG 420 - Engineering Law
- ENG M 401 - Project Management and Entrepreneurship
- ENG M 402 - Project Management and Entrepreneurship
- ENG M 501 - Production and Operations Management
- ENG M 508 - Energy Auditing and Management
- ENG M 510 - Quality Engineering and Management
- ENG M 516 - Reliability Engineering
- ENG M 516 - Maintenance Management
- ENG M 530 - Engineering Project Management
- ENG M 540 - Introduction to Optimization Models and Algorithms
- ENG M 558 - Ergonomics and Work Design
- FIN 301 - Introduction to Finance
- FIN 301 - Introduction to Finance
- MARK 301 - Introduction to Marketing
- MATH 311 - Theory of Functions of a Complex Variable
- MAT E 345 - Corrosion, Oxidation, and Degradation
- MAT E 409 - Nanomaterials and Biomedical Applications
- MEC E 486 - Manufacturing Processes
- MEC E 489 - Experimental Design Project I
- MEC E 490 - Experimental Design Project II
- MEC E 491 - Experimental Design Project II
- MEC E 492 - Modelling and Simulation of Engineering Systems
- MEC E 493 - Energy Conversion
- MEC E 493 - Energy Conversion
- MEC E 494 - Acoustics and Noise Control
- MEC E 494 - Design for Manufacture
- MEC E 496 - Building Systems Design
- MEC E 496 - Building Systems Design
- MEC E 497 - Modelling and Simulation of Engineering Systems
- MEC E 498 - Numerical Simulation in Mechanical Engineering Design
- MEC E 499 - Experimental Design Project II
- MEC E 499 - Advanced Strength of Materials II
- MEC E 508 - Biomechanical Modelling of Human Tissues and Systems
- MEC E 519 - Introduction to Research
- MEC E 520 - Research Project
- MEC E 529 - Aerodynamics
- MEC E 539 - Applied Computational Fluid Dynamics
- MEC E 541 - Combustion Engines
- MEC E 551 - Mechanics and Control of Robot Manipulators

Within the Faculty of Business:

- ACCTG 300 - Introduction to Accounting
- B LAW 301 - Legal Foundations of the Canadian Economy
- FIN 301 - Introduction to Finance
- MARK 301 - Introduction to Marketing
- OM 352 - Operations Management
- SM 301 - Behavior in Organizations
- SMO 321 - Introduction to Strategic Management and Organization Design

Notes

Note: Note that some of these may not be offered every year. See department for details.
Note: admission to FIN 301, MARK 301, SMO 301, SMO 321 is preferentially reserved for students within that Faculty, and is available to engineering students only on a space-available basis.

Credit will only be given for one of E E 404 and ENG M 515, and for one of CIV E 592 and OM 352.

Specific selection of electives should reflect the student's specific interests and needs.

Aerospace Engineering Elective Stream

Students wishing to specialize in the area of aerospace engineering should choose their three program electives from the following courses:

- ENG M 514 - Reliability Engineering
- MEC E 420 - Feedback Control Design of Dynamic Systems
- MEC E 439 - Principles of Turbomachines
- MEC E 537 - Aerodynamics
- MEC E 539 - Applied Computational Fluid Dynamics
- MEC E 541 - Combustion Engines
- MEC E 569 - Mechanics and Design of Composite Materials

Mechanical (Biomedical Option)

Program electives

The three program electives may be chosen from the following in addition to courses listed in Mechanical (Program and Technical Electives) [Engineering]:

- BIOCH 200 - Introductory Biochemistry
- BIOL 107 - Introduction to Cell Biology
- BIOL 108 - Introduction to Biological Diversity
- BIOL 207 - Molecular Genetics and Heredity
- CHEM 261 - Organic Chemistry I
- CHEM 263 - Organic Chemistry II

Note: Admission requirements for the Doctor of Medicine (MD) degree program include a specific number of course units in various core subjects. This information can be found in Admission Requirements. Students in the Biomedical Option who plan to apply to the MD degree program must select their electives carefully to obtain the necessary credit for required subjects. It may also be necessary to take courses over and above those included in the Biomedical Option to meet the course unit requirements in all of the core subjects required for Medicine. Students in the Biomedical Option who plan to apply for admission to the MD degree program should contact their program advisor in the Fall term of second year for guidance on the selection of appropriate electives and any specific courses which would be in addition to those required for the engineering degree.

Complementary Studies Electives

To better understand the role of Engineering within a broader social context, all programs require an element of complementary studies consisting of the humanities, social sciences, arts, management, engineering economics and communications. Aspects of these topics are covered in mandatory courses, but each program contains complementary studies electives so that students may explore areas of particular interest. Notwithstanding this, the Canadian Engineering Accreditation Board requires that programs include exposure to the central thought processes of the humanities and social sciences. One Complementary Studies Elective must be taken from List 1, normally in the First Year of the program. Further Complementary Studies Electives must be at the 200-level or above and should be selected from List 2 (see Course Listings for course descriptions and prerequisites). Note that in some cases, a course may appear both on a complementary studies list and as a program required or program elective course. A single course cannot be used to satisfy multiple course requirements under Programs of Study.

List 1 (First year)

- ANTHR 101 - Introductory Anthropology
- ANTHR 110 - Gender, Age, and Culture
- ANTHR 150 - Race and Racism
- CLASS 102 - Greek and Roman Mythology
- CLASS 104 - Introduction to Ancient Rome
- CLASS 110 - The Ancient World
- ECON 101 - Introduction to Microeconomics
- ECON 102 - Introduction to Macroeconomics
- ECON 204 - Principles of Economics
- ENGL 121 *
- ENGL 122 *
- ENGL 123 *
- ENGL 124 *
- ENGL 125 - Aboriginal Writing *
- HIST 110 - The Pre-Modern World
- HIST 111 - The Early Modern World
- HIST 112 - The Modern World
- HIST 114 - The History of the World in the Last 10 Years
- HIST 115 - Technology and History
- HIST 116 - The Emergence of the Atlantic World
- LING 100
- LING 101 - Introduction to Linguistic Analysis
- PHIL 120 - Symbolic Logic I
- PHIL 125 - Practical Logic
- POLS 101 - Introduction to Politics
- PSYCO 101 - Basic Psychological Processes
- SSM 101 - Introductory Sociology

Note: A single D3 ENGL course cannot satisfy both a Complementary Studies Elective and the English Elective requirements.

List 2 (Second and higher years)

- ACCTG 300 - Introduction to Accounting
- ACCTG 311 - Introduction to Accounting for Financial Performance
- ANTHR 230 - Anthropology of Science, Technology, and Environment
- AREC 365 - Natural Resource Economics
- B LAW 301 - Legal Foundations of the Canadian Economy **
- B LAW 422 - Law of Business Organizations
- B LAW 426 - Natural Resource and Environmental Law ***
- B LAW 432 - The Legal Regulation of Business
- CHRTC 350 - Science and Religion: Christian Perspectives
- CLASS 256 - Introduction to Greek Art and Archaeology
- CLASS 258 - Introduction to Roman Art and Archaeology
- CLASS 283 - Introductory Roman History II
- CLASS 294 - Ancient Science, Technology, and Medicine
- CLASS 376 - Early Civilization
- ECON 294 - Principles of Economics
- ECON 281 - Intermediate Macroeconomic Theory I
- ECON 282 - Intermediate Macroeconomic Theory I
- ECON 355
- ENGG 420 - Engineering Law
- ENG M 402 - Project Management and Entrepreneurship
- ENG M 406 - Adapting Technology to Meet Societal Needs
- HECOL 211 - Human Sexuality
- HIST 260 - Pre-Confederation Canada
- HIST 261 - Post-Confederation Canada
- HIST 295 - 20th-Century Warfare
- HIST 396
- HIST 397 - History of Science I
- HIST 398 - History of Science II
- INT D 257
- INT D 303 - Economics of World Food and Agriculture
- LA ST 210 - South America
- LING 204 - English Syntax
- LING 205 - Phonetics
- MARK 301 - Introduction to Marketing
- OM 352 - Operations Management
- PHIL 205 - Philosophy of Mind
- PHIL 220 - Symbolic Logic II
- PHIL 250 - Contemporary Ethical Issues
- PHIL 265 - Philosophy of Science
- PHIL 325 - Risk, Choice, and Rationality
- PHIL 366 - Computers and Culture
- PHIL 375 - Science and Society
- PHIL 380 - Philosophy of Criticism
- POLS 220
- POLS 221
- POLS 223 - City Government and Politics
- PSYCO 258 - Cognitive Psychology
- PSYCO 275 - Brain and Behavior
- R SOC 355 - Rural Communities and Global Economies
- R SOC 365 - Sociology of Environment and Development
- SMO 200 - Introduction to Management for Non-Business Students
- SMO 301 - Behavior in Organizations
- SOC 212 - Classical Social Theory
- SOC 224 - Sociology of Deviance and Conformity
Mining Engineering

Mining engineers deal with the application of science and technology in the planning, design, development, optimization, operation and management of surface and underground mining and mineral exploration projects. A particularly important challenge that faces mining engineers in today’s environment is to design and implement mining systems to extract minerals with sound environmental technology while maximizing the return on investors’ capital. The major employers of mining engineers include surface and underground mining companies, mineral exploration companies, equipment manufacturers and dealerships, consulting companies, and teaching and research institutions.

The Mining Engineering curriculum at the University of Alberta covers the following core areas of study: ore reserve modelling and grade control, computerized mine planning and design using commercial software packages, mineral economics, mine production engineering, rock and soil mechanics, rock fragmentation, mine ventilation, mine environmental technology, surface and underground mining technology, mine survey, and economic and structural geology. The curriculum is designed to prepare prospective mining engineers with the tools to succeed in a variety of career opportunities including ore reserve analyst, mine planning engineer, mine production engineer, mineral economist, systems engineer, mine maintenance engineer, mine geotechnical engineer, mine reclamation engineer and mine manager.

Ore reserve analysts apply geometric, statistical, probabilistic and geostatistical methods for ore reserve modelling and grade control required for investment decisions, mine planning, design and production. Mine planning engineers use analytical and computer-aided design tools to design and optimize surface and underground mine layouts for efficient extraction processes. Mine production engineers supervise labor and mine equipment to achieve short and long range production targets using efficient and safe operating standards. Mineral economists apply the principles of mathematics, economics and finance in evaluating the economic potential of mining projects, analysis of investment risk and uncertainty and commodity markets analysis and pricing.

Mine systems engineers apply operation research techniques for efficient unit mining operations in the development-production networks. Mine maintenance engineers design and implement preventive, breakdown and repair maintenance programs for the efficient and safe use of mine equipment in production. Mine geotechnical engineers design and implement programs to ensure the stability of underground mine openings, surface mine slopes, and waste and tailings dumps. Mine reclamation engineers design and monitor reclamation of landscapes after mine closure. Mine managers use management and engineering principles to manage the overall mining operations to meet short- and long-term goals.

Required Courses and Suggested Course Sequence for Traditional

Mining

Year 2

<table>
<thead>
<tr>
<th>Term 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIV E 265 - Engineering Drawing and Computer Graphics</td>
</tr>
<tr>
<td>EAS 210 - Engineering Earth Science</td>
</tr>
<tr>
<td>ECE 209 - Fundamentals of Electrical Engineering</td>
</tr>
<tr>
<td>MATH 209 - Calculus III</td>
</tr>
<tr>
<td>MIN E 295 - Introduction to Mining Engineering</td>
</tr>
<tr>
<td>STAT 235 - Introductory Statistics for Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 243 - Engineering Thermodynamics</td>
</tr>
<tr>
<td>GIV E 250 - Plane Surveying</td>
</tr>
<tr>
<td>GIV E 251 - Survey School *</td>
</tr>
<tr>
<td>GIV E 270 - Mechanics of Deformable Bodies I</td>
</tr>
<tr>
<td>MATH 201 - Differential Equations</td>
</tr>
<tr>
<td>MIN E 310 - Ore Reserve Estimation</td>
</tr>
<tr>
<td>ITS Elective (3-0-0)</td>
</tr>
</tbody>
</table>

Note: *Held in Spring/Summer (Spring Term)

Year 3

<table>
<thead>
<tr>
<th>Term 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIV E 330 - Introduction to Fluid Mechanics OR</td>
</tr>
<tr>
<td>CH E 312 - Fluid Mechanics</td>
</tr>
<tr>
<td>ENG M 310 - Engineering Economy OR</td>
</tr>
<tr>
<td>ENG M 401 - Financial Management for Engineers</td>
</tr>
<tr>
<td>MIN E 323 - Rock Mechanics</td>
</tr>
<tr>
<td>MIN E 325 - Mine Planning and Design</td>
</tr>
<tr>
<td>Program Elective (3-0-0) (See Program and Technical Electives - Mining)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIV E 381 - Soil Mechanics</td>
</tr>
<tr>
<td>MIN E 324 - Drilling, Blasting, and Explosives</td>
</tr>
<tr>
<td>MIN E 330 - Mine Transport and Plant Engineering</td>
</tr>
<tr>
<td>English Elective (3-0-0)</td>
</tr>
<tr>
<td>Complementary Studies Elective (3-0-0) (See Complementary Studies Electives)</td>
</tr>
</tbody>
</table>

Year 4

<table>
<thead>
<tr>
<th>Term 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 421 - Mineral Processing</td>
</tr>
<tr>
<td>ENGG 404 - Engineering Safety and Loss Management</td>
</tr>
<tr>
<td>MIN E 402 - Mine Design Project I</td>
</tr>
<tr>
<td>MIN E 413 - Surface Mining Methods and Operations Management</td>
</tr>
<tr>
<td>MIN E 414 - Underground Mining Methods</td>
</tr>
<tr>
<td>Program Elective (3-0-0) (See Program and Technical Electives - Mining)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG 400 - The Practice of the Engineering Profession</td>
</tr>
<tr>
<td>MIN E 403 - Mine Design Project II</td>
</tr>
</tbody>
</table>
Required Courses and Suggested Course Sequence for Co-op Programs

Mining Plan I

Year 2

Fall Term 3
- CIV E 265 - Engineering Drawing and Computer Graphics
- EAS 210 - Engineering Earth Science
- ECE 209 - Fundamentals of Electrical Engineering
- ENGG 299 - Orientation to Cooperative Education
- MATH 209 - Calculus III
- MIN E 295 - Introduction to Mining Engineering
- STAT 235 - Introductory Statistics for Engineering
Winter Term 4
- CH E 243 - Engineering Thermodynamics
- CIV E 250 - Plane Surveying
- CIV E 251 - Survey School *
- CIV E 270 - Mechanics of Deformable Bodies I
- MATH 201 - Differential Equations
- MIN E 310 - Ore Reserve Estimation
- ITS Elective (3-0-0)
Summer
- WKEXP 901 - Engineering Work Experience I

Note *Held in Spring/Summer (Spring Term)*

Year 3

Fall
- WKEXP 902 - Engineering Work Experience II
- Winter Term 5
- CIV E 330 - Introduction to Fluid Mechanics OR
- CH E 312 - Fluid Mechanics
- MIN E 324 - Drilling, Blasting, and Explosives
- MIN E 330 - Mine Transport and Plant Engineering
- English Elective (3-0-0)
- Program Elective (3-0-0) (See Program and Technical Electives - Mining)

Summer Term 6
- CIV E 381 - Soil Mechanics
- CME 421 - Mineral Processing
- ENG M 310 - Engineering Economy OR
- ENG M 401 - Financial Management for Engineers
- MIN E 323 - Rock Mechanics
- MIN E 325 - Mine Planning and Design

Year 4

Fall Term 6
- WKEXP 903 - Engineering Work Experience III
- Winter
- WKEXP 904 - Engineering Work Experience IV
- Summer
- WKEXP 905 - Engineering Work Experience V
- Year 5

Fall Term 7
- ENGG 404 - Engineering Safety and Loss Management
- MIN E 402 - Mine Design Project I
- MIN E 413 - Surface Mining Methods and Operations Management
- MIN E 414 - Underground Mining Methods
- Complementary Studies Elective (3-0-0)
- Program Elective (3-0-0) (See Program and Technical Electives - Mining)

Winter Term 8
- ENGG 400 - The Practice of the Engineering Profession
- MIN E 403 - Mine Design Project II
- MIN E 407 - Principles of Mine Ventilation
- MIN E 408 - Mining Enterprise Economics
- MIN E 420 - Mine Equipment Selection and Maintenance
- MIN E 422 - Environmental Impact of Mining Activities
- Mining Plan II
- Mining Plan II (Co-op) (Engineering)
Program and Technical Electives - Mining

Mineral Processing:

The following courses are approved electives for the BSc program in Mining Engineering.

Courses not listed must be preapproved by the Mining Undergraduate Student Advisor. Preapproval forms can be obtained from the Department. Without a preapproval form in your file there is no guarantee you will be given credit for the course if it is not in this list.

- ENGG 400 - The Practice of the Engineering Profession
- MIN E 403 - Mine Design Project II
- MIN E 407 - Principles of Mine Ventilation
- MIN E 408 - Mining Enterprise Economics
- MIN E 420 - Mine Equipment Selection and Maintenance
- MIN E 422 - Environmental Impact of Mining Activities
- REN R 250 - Water Resource Management
- REN R 260 - History and Fundamentals of Environmental Protection and Conservation
- REN R 307 - Environmental Assessment Principles and Methods
- REN R 350 - Physical Hydrology
- SMO 301 - Behavior in Organizations
- SMO 402 - Management Skills for Supervisors and Leaders
- STAT 361 - Sampling Techniques
- STAT 368 - Introduction to Design and Analysis of Experiments
- STAT 378 - Applied Regression Analysis
- STAT 432 - Survival Analysis
- STAT 441 - Applied Statistical Methods for Data Mining
- STAT 479 - Time Series Analysis

Note: Credit will only be given for one of B LAW 301 and ENGG 420.

Focus Electives

The following courses are recommended program electives focus groups for the BSc program in Mining Engineering.

Mineral Processing:

- CME 422 - Interfacial Engineering in Mineral Processing
- CME 472 - Extractive Metallurgy

Geology:

- EAS 233 - Geologic Structures
- EAS 421 - Structural Geology and Tectonics

Business:

- FIN 301 - Introduction to Finance
- FIN 413 - Risk Management
- FIN 422 - Capital Investment
- OM 352 - Operations Management
- OM 422 - Simulation and Computer Modelling Techniques in Management
- OM 426 - Service Operations Management
- SMO 301 - Behavior in Organizations
- SMO 402 - Management Skills for Supervisors and Leaders

Note: Registration in more advanced business courses requires approval of the Faculty of Business.

Complementary Studies Electives

To better understand the role of Engineering within a broader social context, all programs require an element of complementary studies consisting of the humanities, social sciences, arts, management, engineering economics and communications. Aspects of these topics are covered in mandatory courses, but each program contains complementary studies electives so that students may explore areas of particular interest. Notwithstanding this, the Canadian Engineering Accreditation Board requires that programs include exposure to the central thought processes of the humanities and social sciences. One Complementary Studies Elective must be taken from List 1, normally in the First Year of the program. Further Complementary Studies Electives must be at the 200-level or above and should be selected from List 2 (see Course Listings for course descriptions and prerequisites). Note that in some cases, a course may appear both on a complementary studies list and as a program required or program elective course. A single course cannot be used to satisfy multiple course requirements under Programs of Study.

List 1 (First year)

- ANTHR 101 - Introductory Anthropology
- ANTHR 110 - Gender, Age, and Culture
- ANTHR 150 - Race and Racism
- CLASS 102 - Greek and Roman Mythology
- CLASS 103 - Introduction to Ancient Greece
- CLASS 104 - Introduction to Ancient Rome
- CLASS 110 - The Ancient World
- ECON 104 - Introduction to Microeconomics
- ECON 102 - Introduction to Macroeconomics
- ECON 204 - Principles of Economics
- ENGL 121 *
- ENGL 122 *
- ENGL 123 *
- ENGL 124 *
- ENGL 145 - Aboriginal Writing *
- HIST 110 - The Pre-Modern World
- HIST 111 - The Early Modern World
- HIST 112 - The Modern World
Elective and the English Elective requirements. *A single ★3 ENGL course cannot satisfy both a Complementary Studies requirement and the English Elective requirements.

List 2 (Second and higher years)

- ACCTG 300 - Introduction to Accounting
- ACCTG 311 - Introduction to Accounting for Financial Performance
- ANTHR 230 - Anthropology of Science, Technology, and Environment
- AREC 365 - Natural Resource Economics
- B LAW 301 - Legal Foundations of the Canadian Economy **
- B LAW 422 - Law of Business Organizations
- B LAW 428 - Natural Resource and Environmental Law ***
- B LAW 432 - The Legal Regulation of Business
- CHRTC 350 - Science and Religion: Christian Perspectives
- CLASS 294 - Introduction to Greek Art and Archaeology
- CLASS 295 - Introduction to Roman Art and Archaeology
- CLASS 283 - Introductory Roman History II
- CLASS 294 - Ancient Science, Technology, and Medicine
- CLASS 376 - Early Civilization I
- ECON 204 - Principles of Economics
- ECON 281 - Intermediate Microeconomics
- ECON 282 - Intermediate Microeconomics
- ECON 385
- ENGG 420 - Engineering Law
- ENG M 402 - Project Management and Entrepreneurship
- ENG M 406 - Adapting Technology to Meet Societal Needs
- ENCOL 211 - Human Sexuality
- HIST 260 - Pre-Confederation Canada
- HIST 261 - Post-Confederation Canada
- HIST 295 - 20th-Century Warfare
- HIST 396
- HIST 397 - History of Science I
- HIST 398 - History of Science II
- INT D 257
- INT D 303 - Economics of World Food and Agriculture
- LA ST 210 - South America
- LING 204 - English Syntax
- LING 205 - Phonetics
- MARK 301 - Introduction to Marketing
- OM 352 - Operations Management
- PHIL 205 - Philosophy of Mind
- PHIL 220 - Symbolic Logic II
- PHIL 250 - Contemporary Ethical Issues
- PHIL 265 - Philosophy of Science
- PHIL 325 - Risk, Choice, and Rationality
- PHIL 366 - Computers and Culture
- PHIL 375 - Philosophy of Science
- POL S 220
- POL S 221
- POL S 223 - City Government and Politics
- POL S 266
- PSYCO 258 - Cognitive Psychology
- PSYCO 275 - Brain and Behavior
- R SOC 355 - Rural Communities and Global Economies
- R SOC 365 - Sociology of Environment and Development
- SMO 200 - Introduction to Management for Non-Business Students
- SMO 301 - Behavior in Organizations
- SOC 212 - Classical Social Theory
- SOC 224 - Sociology of Deviance and Conformity
- SOC 225 - Criminology
- SOC 241 - Social Psychology
- SOC 242
- SOC 251 - Population and Society
- SOC 301 - Sociology of Gender
- WGS 201

Notes:
**Not available to Civil students
***Not available to Civil (Environmental Engineering Option) students.

A second course from the ITS List may be taken as part of List 2. However, a single course cannot be used to satisfy both the ITS and Complementary Studies requirements. This list is updated annually. Courses that teach a language or the application of a particular skill (such as courses in physical education, music and art) do not meet the intent of the Accreditation Board with respect to complementary studies and are therefore not eligible.

Impact of Technology on Society (ITS) Elective

A specific requirement of the Canadian Engineering Accreditation Board is study of the impact of technology on society. To meet this requirement, students must take one of the following:

- ENG M 403
- ENG M 405 - Engineering, Business and Society
- ENG M 407 - History of Technology
- HIST 391 - History of Technology
- INT D 381 - Fundamentals of Energy, Environment and Sustainability
- PHIL 265 - Philosophy of Science
- PHIL 366 - Computers and Culture
- PHIL 375 - Science and Society
- STS 200 - Introduction to Studies in Science, Technology and Society
- SOC 366 - People in Industry
- SOC 363 - Sociology of Work and Industry

English Electives

Most engineering programs require a single-term (3-0-0) English course. This is typically ENGL 199, but ENGL 121, ENGL 122, ENGL 123, ENGL 124 and ENGL 125 are also acceptable.

Petroleum Engineering

Working in the upstream sector of the oil and natural gas (O and NG) industry, petroleum engineers are responsible for the technical and economic analysis leading to the appraisal, development, and production of O and NG reserves. Petroleum engineers apply scientific principles to the challenge of drilling wells into underground formations, and to provide safe and efficient production of O and NG reserves. They appraise the value of the resource and manage the reservoir to maximize returns. Petroleum engineering encompasses skills from a broad array of scientific disciplines, including geology and chemical, civil, and mechanical engineering.

Most graduates find work in the Canadian O and NG industry, while some choose to work overseas. Others work in areas where their training has given them appropriate skills, such as in underground contaminant flow. Our undergraduate degree program is the only accredited petroleum engineering program in Canada.

Required Courses and Suggested Course Sequence for Traditional

Petroleum

Year 2

Term 3

- CH E 243 - Engineering Thermodynamics
- EAS 210 - Engineering Earth Science
- ECE 209 - Fundamentals of Electrical Engineering
- ENG M 202 - Materials Science II
- MATH 209 - Calculus III
- ENG Elective (3-0-0)

Term 4

- CH E 312 - Fluid Mechanics
- CIV E 270 - Mechanics of Deformable Bodies I
Required Courses and Suggested Course Sequence for Co-op Programs

Petroleum

Year 2

<table>
<thead>
<tr>
<th>Fall Term 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CH E 243 - Engineering Thermodynamics</td>
</tr>
<tr>
<td>• EAS 210 - Engineering Earth Science</td>
</tr>
<tr>
<td>• ECE 209 - Fundamentals of Electrical Engineering</td>
</tr>
<tr>
<td>• ENGG 299 - Orientation to Cooperative Education</td>
</tr>
<tr>
<td>• MAT E 202 - Materials Science II</td>
</tr>
<tr>
<td>• MATH 209 - Calculus III</td>
</tr>
<tr>
<td>• English Elective (3-0-0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winter Term 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CH E 312 - Fluid Mechanics</td>
</tr>
<tr>
<td>• CIV E 270 - Mechanics of Deformable Bodies I</td>
</tr>
<tr>
<td>• MATH 201 - Differential Equations</td>
</tr>
<tr>
<td>• PET E 275 - Petroleum Reservoir Fluids</td>
</tr>
<tr>
<td>• STAT 235 - Introductory Statistics for Engineering</td>
</tr>
<tr>
<td>• Complementary Studies (3-0-0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>• WKEXP 901 - Engineering Work Experience I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
</tr>
<tr>
<td>• WKEXP 902 - Engineering Work Experience II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winter Term 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CH E 374 - Computational Methods in Engineering</td>
</tr>
<tr>
<td>• EAS 222 - Stratigraphy and Sedimentation</td>
</tr>
</tbody>
</table>

Program and Technical Electives

Petroleum

- The two program electives should be chosen from the following:
 - ACCTG 300 - Introduction to Accounting
 - B LAW 301 - Legal Foundations of the Canadian Economy
 - B LAW 428 - Natural Resource and Environmental Law
 - CH E 343 - Chemical Engineering Thermodynamics
 - CH E 522 - Fundamentals of Oil Sands Upgrading
 - CH E 534 - Fundamentals of Oil Sands Extraction
 - CIV E 265 - Engineering Drawing and Computer Graphics
 - CME 265 - Process Analysis
 - EAS 205 - Environment Alberta
 - EAS 206 - Environment Earth
 - EAS 209 - Geology of Western Canada and the National and Provincial Parks
 - EAS 323 - Introduction to Hydrogeology
 - ECON 355
 - ECON 365 - Resource Economics
 - ECON 366 - Energy Economics
 - ECE 341 - Analytical Methods in Electrical Engineering
 - ENGG 406 - Engineering Safety and Risk Management
 - ENNG 420 - Engineering Law
 - ENGG 530 - Engineering Project Management
 - FIN 301 - Introduction to Finance
 - FIN 422 - Capital Investment
 - GEOPH 224 - Geophysical Exploration Techniques
 - GEOPH 326 - Seismic Imaging
 - MAT E 345 - Corrosion, Oxidation, and Degradation
 - MATH 253 - Theory of Interest
 - MATH 300 - Advanced Boundary Value Problems I
 - MATH 311 - Theory of Functions of a Complex Variable

University of Alberta

- MATH 201 - Differential Equations
- PET E 275 - Petroleum Reservoir Fluids
- STAT 235 - Introductory Statistics for Engineering
- Complementary Studies (3-0-0)
• MATH 337 – Introduction to Partial Differential Equations
• MATH 436 – Intermediate Partial Differential Equations I
• MATH 438 – Intermediate Partial Differential Equations II
• MEC E 340 – Applied Thermodynamics
• OM 352 – Operations Management
• OM 422 – Simulation and Computer Modelling Techniques in Management
• OM 426 – Service Operations Management
• PHYS 230 – Electricity and Magnetism
• SMO 301 – Behavior in Organizations
• SMO 321 – Introduction to Strategic Management and Organization Design
• SMO 402 – Management Skills for Supervisors and Leaders
• SMO 404 – Interpersonal Communication and Team Management
• SMO 412 – Effective Negotiations
• STAT 361 – Sampling Techniques
• STAT 368 – Introduction to Design and Analysis of Experiments

Notes
Credit will only be given for one of B LAW 301 and ENGG 420, and for one of EAS 204 and EAS 205. ACCTG 300 can be used as either a program or complementary elective.

Note: That some of these courses may have prerequisites. Other courses may be taken with Department approval.

Complementary Studies Electives

To better understand the role of Engineering within a broader social context, all programs require an element of complementary studies consisting of the humanities, social sciences, arts, management, engineering economics and communications. Aspects of these topics are covered in mandatory courses, but each program contains complementary studies electives so that students may explore areas of particular interest. Notwithstanding this, the Canadian Engineering Accreditation Board requires that programs include exposure to the central thought processes of the humanities and social sciences. One Complementary Studies Elective must be taken from List 1, normally in the First Year of the program. Further Complementary Studies Electives must be at the 200-level or above and should be selected from List 2 (see Course Listings for course descriptions and prerequisites). Note that in some cases, a course may appear both on a complementary studies list and as a program required or program elective course. A single course cannot be used to satisfy multiple course requirements under Programs of Study.

List 1 (First year)

• ANTHR 101 – Introductory Anthropology
• ANTHR 110 – Gender, Age, and Culture
• ANTHR 150 – Race and Racism
• CLASS 102 – Greek and Roman Mythology
• CLASS 103 – Introduction to Ancient Greece
• CLASS 104 – Introduction to Ancient Rome
• CLASS 110 – The Ancient World
• ECON 101 – Introduction to Microeconomics
• ECON 102 – Introduction to Macroeconomics
• ECON 206 – Principles of Economics
• ENGL 121 *
• ENGL 122 *
• ENGL 123 *
• ENGL 124 *
• ENGL 125 – Aboriginal Writing *
• HIST 110 – The Pre-Modern World
• HIST 111 – The Early Modern World
• HIST 112 – The Modern World
• HIST 114 – The History of the World in the Last 10 Years
• HIST 115 – Technology and History
• HIST 116 – The Emergence of the Atlantic World
• LING 100
• LING 101 – Introduction to Linguistic Analysis
• PHIL 120 – Symbolic Logic I
• PHIL 125 – Practical Logic
• POL S 101 – Introduction to Politics
• PSYCO 104 – Basic Psychological Processes
• SOC 100 – Introductory Sociology

Note: *A single D3 ENGL course cannot satisfy both a Complementary Studies Elective and the English Elective requirements.

List 2 (Second and higher years)

• ACCTG 300 – Introduction to Accounting
• ACCTG 311 – Introduction to Accounting for Financial Performance
• ANTHR 230 – Anthropology of Science, Technology, and Environment
• AREC 365 – Natural Resource Economics
• B LAW 301 – Legal Foundations of the Canadian Economy **
• B LAW 422 – Law of Business Organizations
• B LAW 428 – Natural Resource and Environmental Law ***
• B LAW 432 – The Legal Regulation of Business
• CHRTC 350 – Science and Religion: Christian Perspectives
• CLASS 254 – Introduction to Greek Art and Archaeology
• CLASS 255 – Introduction to Roman Art and Archaeology
• CLASS 283 – Introductory Roman History II
• CLASS 294 – Ancient Science, Technology, and Medicine
• CLASS 376 – Early Civilization I
• ECON 204 – Principles of Economics
• ECON 281 – Intermediate Microeconomic Theory I
• ECON 282 – Intermediate Macroeconomic Theory I
• ECON 355
• ENGG 420 – Engineering Law
• ENG M 402 – Project Management and Entrepreneurship
• ENG M 406 – Adapting Technology to Meet Societal Needs
• HECOL 211 – Human Sexuality
• HIST 260 – Pre-Confederation Canada
• HIST 261 – Post-Confederation Canada
• HIST 295 – 20th-Century Warfare
• HIST 396
• HIST 397 – History of Science I
• HIST 398 – History of Science II
• INT D 257
• INT D 303 – Economics of World Food and Agriculture
• LA ST 210 – South America
• LING 204 – English Syntax
• LING 205 – Phonetics
• MARK 301 – Introduction to Marketing
• OM 352 – Operations Management
• PHIL 205 – Philosophy of Mind
• PHIL 220 – Symbolic Logic II
• PHIL 250 – Contemporary Ethical Issues
• PHIL 265 – Philosophy of Science
• PHIL 325 – Risk, Choice, and Rationality
• PHIL 366 – Computers and Culture
• PHIL 375 – Science and Society
• PHIL 380 – Philosophy of Criticism
• POL S 220
• POL S 221
• POL S 223 – City Government and Politics
• POL S 266
• PSYCO 258 – Cognitive Psychology
• PSYCO 275 – Brain and Behavior
• R SOC 355 – Rural Communities and Global Economies
• R SOC 365 – Sociology of Environment and Development
• SMO 200 – Introduction to Management for Non-Business Students
• SMO 301 – Behavior in Organizations
• SDC 212 – Classical Social Theory
• SDC 224 – Sociology of Deviance and Conformity
• SDC 225 – Criminology
• SDC 241 – Social Psychology
• SOC 242
• SOC 251 – Population and Society
• SOC 301 – Sociology of Gender
• WGS 201

Notes:
**Not available to Civil students
***Not available to Civil (Environmental Engineering Option) students.

A second course from the ITS List may be taken as part of List 2. However, a single course cannot be used to satisfy both the ITS and Complementary Studies requirements. This list is updated annually. Courses that teach a language or the application of a particular skill (such as courses in physical education, music and art) do not meet the intent of the Accreditation Board with respect to complementary studies and are therefore not eligible.

Impact of Technology on Society (ITS) Elective

A specific requirement of the Canadian Engineering Accreditation Board is study of the impact of technology on society. To meet this requirement, students must take one of the following:

• ENG M 403
• ENG M 405 - Engineering, Business and Society
• HIST 115 - Technology and History
• HIST 391 - History of Technology
• HGP 250 - Natural Resources and Environmental Management
• INT D 361 - Fundamentals of Energy, Environment and Sustainability
• PHIL 265 - Philosophy of Science
• PHIL 366 - Computers and Culture
• PHIL 375 - Science and Society
• STS 200 – Introduction to Studies in Science, Technology and Society
• SOC 366 - People in Industry
• SOC 363 - Sociology of Work and Industry

English Electives

Most engineering programs require a single-term (3-0-0) English course. This is typically ENGL 199, but ENGL 121, ENGL 122, ENGL 123, ENGL 124 and ENGL 125 are also acceptable.